. Reliability Techniques for Computer

o ——"'\\
23 Executive Programs
© m '
W ON o
i 4 \0
o™~ Q-
~ & uwn
= 02 -
‘ @
Q : .

‘ i Summary Report
]‘ Y
. & NAS8-2666-9

o
a CR~12373¢
! N3
i LW
' [~ &)
‘ —
TSR
: n

B .
.g Information Research Associates

- 2200 San Antoﬁio

Austin, Texas 78705

RELIABILITY TECHNIQUES

91 p

May 17, 1972

{Information Research Assoc

FOR COMPUTER EXECUTIVE PROGRANMS
217 May 1972

(NASA-CR-123736) .

|

31

" "Repreducedby T T T~
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

-

1. Introduction .

The study of techniques for increasing the stability and reliability
- of computer programs is still in its infancy. This report deals particu-
larly with those fechniques espécially adopted for use on executive and
supervisory systems. This summary report is in three sections, Program
Structure, Program Validation and Redundancy Techniques: Roll-Back_and
Recovery. Each report section corresponds fairly closely to the section

in the scope of work specification.

2. Program Structure

Contemporary program segmentation as manifested by general explicit
Acontrol‘structure, phase segmented code, page organized programs, parallel
fragmented tasks, and rollback structured routines are assessed for
reliability characteristics. All structures emhance the program's reliability
by grdering the code bulk into smaller interacting components and defining
‘the interface characteristics. Segmentation criteria provide basic infor-
mation for the confirmation an& validation activities,

The explicit and phase structures are natural outgrowths of the design
procedure requiring minimal achievemenf cost. ?age, parallel, and rollback
structures require substantial processing investments to obtain the best
partitioning; their reliability impacts are more applicéble to later phases
of check-out when the code becomes fairly statiomary.

"The ;;ge.ahd rollback struétures demonstrate inherent hardware failﬁre
_recovery mechanisms. Parallel structure allows for graceful degradation in
the hardware environment.

To improve confidence and reduce validation lead time,‘severalyactions
may be taken, Implementation primitives (e.g. hardware microprogrammed or
software interpreﬁive procedures) can be designed for diagnostic goals to

exercise and validate new programs. Streamlined primitives for application

-2-8/

efficiency would be substituted wifhout modifying the program code.

An automated system is desirable and feasible to assist in the checking
(both dynamic and static) of new programs. Emphasis would be placed on
interface consistency checking.among coopérating sections and automation of

tedious debug procedures to speed programmer analysis of oparatiomal results.

3. Program Validation

Five techniques for Qalidation of programs are discussed. The effect-
iveness of each depends to a marked extent on the modularization techniques
defined in the allowed program structure.’

3.1. Automatic validation of modules through rigérous proofs of

correctness of the programmed representation of the algorithms
(see Appendix A).

3.2 Automatic validation by exhaustive or selective analysis of all
flowpaths through selected modules.

3.3 Analysis of validity of data bases used by the modules. This
can be accompiished by examination of explicitly transferred
parameters and by automatic analysis of access and sequencing
mechanisms for giobal common data base; (see Appendix B).

3.4 Rigorous modularization allows the use of‘ﬁixed execution-
si@ulation testing. That is, program modules may be replaced
in the testing phase by simulation of their functions. This
siﬁulation may inélude such features as generation of limiting
test cases for calling ;nd'called modules and extensive validity
checking for transmitted data. Such simulation ccﬁveniently'
allows total environmental testing of only partially coded total
programs through the simulation and use of data structures which

'

are not yet implemented.

e

3.5 A further possibility whose convenience is enhanced by
rigorous ''top down" modularization is mixed compilation-executibn ‘
and interpretation of_source~code.
Economic means of conétruction of an integrated validation package including

all of these components are discussed.

4. Redundancy Techniques: Roll-Back and Récovery

Reliability is an important aspect of any system. On-line diagnosis,
parity check codihg, triple modular redundancy and other methods have been
used to improve the reliability of computing systems. In this paper another
aspect of reliable computing systems is explored. The problem is that of
recovering error-free information when an error is detected at some stage
iﬁ the processing of a program.

If an error or fault is detected while a program is being processed
and if it cannot be corrected immediately, it may be necessary to run the
entire program again. The time spent in rerunning the program may be sub-
stantial and in some real time applications critical. Recovery time can be
reduced by saving states of the program (all in the information stored in
registers, primary and secondary storage etc.) at intervals, as the processing
continues. If an error is detected .. érogram is restarted from its most
_recently saved state, However, a price is paid in saving a state in the
‘form of time spent storing all the relevant information in secondary storage.
Hence it is expensive to save the state of fhe program too often. Not saving
any state of the program may cause an unacceptable large recovery time. The
problem that we solve is: Determine the optimum points at which the state of

the program should be stored to recover after any malfunction.

Reliability Techniques for Computer

Executive Programs

Final Report

NAS8-26669

Information Research Associates
2200 San Antonio

Austin, Texas 78705

May 17, 1972

&

2

TABLE OF CONTENTS

I. Program Structure

II. Program Validation

Appendix A. A Program to Aid in Proving Program Correctness

.Appendix B. Analyzing Sequences of Operations Performed by Programs

III. Redundancy Techniques: Roll-Back and Recovery

I. PROGRAM STRUCTURE

Prdgram segmentation is the process of classifying general program
elements into collectively equivalent component categories. Properties
depend upon the decomposition criteria used. For example, most program
parts are naturally segmented into data and instructions.(except for self-
modifying code). Data may be hierarchily refined into files, records,
words, and bits of information when this structure is desirable for exemplifying
or coding the program. Similarly, instructions may be functionally grouped
into nested or cascaded routines, specifying their interaction and
coéperation in the software system.

In this section we will be primarily interested in exposing segmentation
éharacteristics in program instructions and data. The programs may be
fragmented for operational clarity, debugging assiéténce, validation and
evaluation probe insertion, more amenable hardware operation, or reéovery
" from transient faults. Since many considerations aside from reliability
influence the final segmentation selected, it appears prudent to examine
the characteristics of some segmentation schemes and observe how they

enhance or mitigate diagnostic efforts.

The program graph.

For examination and description, it is often convenient to represent
the program as a directed graph. In this abstract representation, a collection
of nodes are inﬁerconnected by directed edges. The relationship between the
program and its graph may bg manifested in several ways depending upon the
analysis intent. For example, nodes in the graph may correspond to clusters
of instructions and edges describe the sequence of control among these

actions (e.g. a flowchart). Alternatively, the nodes may represent instruction

-2-

- sequences and the edges associated with data linking the operations togétherg
Since the first interpretation is more widespread, we will assume this form
here.

Graphical representation allows considerable flexibility for program
analysis. For example, we may choose to group several nodes and their
interconnecting edges together and attribute a processing property to this
subgraph. After making desirable groupings in the orfginal graph, we can
construct a new graph consisting of nodes corresponding to previous subgraphs
and edges connecting the subgraphs. By condensation of the program graph,
we can illustrate the process in any level of detail desired.

In some applications of segmentation, it will be desirable to produce
modified graphs that are loop free. This acyclic graphical fepfesenﬁation
insures that once a node's processing is complete, the system never reenters
this node. To perform .the reduction, loops in the original graph are coalesced
to nodes. If looping is compiex or there are nested loops, it may be desifable
to have séverallintermediate levels in the description between the original
graph and its acyclic reduction. If this coalesce oversimplifies the struc-
ture, it may be necessary to remove some feedback edges (i.e. those causing
looping) to obtain a cycle free graph. In general, the minimum number of
edges is removed.

It is obvious that the coagulation of nodes segments the program into
parts. Grouping nodes of the original program graph nodes defines segment

members or program tasks. Since loops typically indicate itterative proce-

dures or set operations, defining segments along loop nesting lines is

reasonable.

zzggé of segmentation

Since most proérams are segmented‘to some extent by either the
language or design process while they are developed, it will be
extremely infrequent that one éncountered software completely void of
structure. Therefore,.wé will examine the nature and characteristics
'of this prior segmentation and observe how it may be used for reliability
considerations. ‘

~The most frequently encountered type of segmentation is produced

by fragmenting the process.into phases. While the decomposition is
often performed manually during program design, it can be introduced
after the fact by producing an acyclic program graph. The system
operates by sequential application of phases which are process oriented
and communicate by common data and directed calls to the next phases.
In opération, the phases may use memory overlays to conserve space.
For example an assembler might be segmented into first»and second pass
phases where the first pass builds a symbol table, assigns addresses, and
expands macros that are used by the second pass phase in producing object
code, R

Other program structures may have been imposed to accomidate
operation on specific hardware. In this category, the system may be
decomposed into serialselfjufficient'tasks to run simultaneously. This
parallel segmentation allows reduced completion time when several hard-
ware processors are potentially available or considered separate in a
meltiprogram enviromment.

While multiprogrammed syétems may be manifested in many forms, the

two most prevalent are batch and paged systems. The batch system requires

A

entirely main memory resident programs with complete jobs swapped in and
out as required by_I/O requésts or system functions. Since pure batch
processing does not affeét-a program's étructural properties significantly,
we will not direct attention to it. In paged systems, however, only a small
" portion of the program is present in main memory at any given time. The
philosophy is that at any particular instant, the majority of processing

is local=instructions in the vicinity of the cﬁrrent instruction are more
probable than remote instructions and data references tend to be
localized. That is, each section of the program can be characterized by

a "working set'" of instructions and data that are used most heavily.
Program references (instruction or data) outside the current working set
(called a "page.fault") indicates a change in execution characteristics
and requires a new (poésible overlapping) working seﬁ. Thus the program
is organized into pages such that a set of pages corresponds to the working
set required for significant amounts of processing. Attempts are made

to placé loops on the minimum number of pages to reduce the number of

page swaps. Similarly, the data areas required for the looping segment
are grouped on the same data éage. The program operates by having the
program information on mass sotrage and placing in main memory only the
working set required at any instant. Page faults cause the old pages of
the working set to be replaced by the required pages in main memory,

0ld pages are updatéd on the mass sforage copy to maintain.execution
changes and reflect the state of the process when swapped. Even when

not a formal paging system, many similar characteristics exist when
instructionsarenﬁltiply fetched or a cache memory system exists.,

Rollback program structure is directed primarily toward diagnosis

“5-

and improved reliability. At various program points (rollback points)
the program state is observed and recorded. Execution then commences

to the next rollback point.where results are examined for correctness.

If correct, the program state is updated and execution resumes on the
next section. If an error is detected, the program state is returned to
the 1ést rollback point and the program segment in error is rerun. This
scheme is intended to recover from transient hardware errors and prevent
solid faults from permanently damaging the data base (e.g. files used

as both inputs and outputs). The optimal location of the rollback points

will depend upon the overhead cost of saving the program state, and

" minimizing the cost of lost processing time. In part, the location of

these points will require locating the places in the program in which
the minimum amount of information describes the program state. We will
assume here that the error detection criteria can be specified and the
- rollback procedure itself is error free.

Notice that-the different segmentation schemes are not necessarily
mutuaily exclusive, For example, the software system may have identifi-
able phases which are ‘individually composed of parallel tasks. Each of
these tasks may be realized as a paged or rollback structure. Since the
properties of such a hybrid system can be largely derived by the super-
position of individual characteristics from the various philosophies,
we will deal here with the properties of pufe segmented systems along one

of the themes.

Debugging ease. ' ' S
Debugging a program is really an ongoing process rather than an

instantaneous development task. Oxrdinarily, the procedure is renamed

-6-

"maintenance'" after the program is released for use even though actual
implementation errors are corrected. In any case, we can identify at
least two classes of activity: 1) initial operational investigation and
2) advanced inspection of suspicious events. The first activity involves
the removal of keypunch errors and Bad coding to the point that the program
_compiles and successfully executes test cases.

To realize these goals, the programmer usually employs two tactics:

1) Imbedded diagnostic print commands

2) System dumps of the program
Effective utilization .of diagnostic print commands requires programmer
precognition of both the program architecture and probable causes of errors.
Failure to anticipate these probiems results in the insertion of new print
commands, recompilation, and additional run time to repeat the failure;
obviously, duplication of known errors is poor utilization of both computa-
tional and human resources. Offsetting advantages are the ability to capture
transieﬁt behaviors, exact interpretation of bit patterns (e.g. decoded to
floating point), and concentration on meaningful subsets of informationm.

System dumps are provided either on demand or as a post-mortem for
detected fatal errors (e.g. expired time 1limit, memory protection violatioms,
etc.). The completeness and format of the information, however, often
impedes the investigation probing. Fdr»example, to determine the value of a
. single program variable, the programmer must compute the physical address
using a symbol table with relative addresses and several relocation biases.
Faithful execution of this exercise is rewarded with a compressed binary
pattern (e.g. octal or hexadecimal) requiring further decoding to the desired
representation (e.g. decimal integer or floating point). This process is

both- tedious and error prone~-largely because the information is organized

7=

"for convenient implementation in the éomputer. Since most of the required
information is already available, interactive automated assistance is both
valuable and tractable. The user could symbolically request variables and
specify the decode format. With access to crosé reference, symbol table,
and source code from the compilation process, the interactive system could
be used to present lists of interacting variables and their values from the
dump data. For example, consider the FORTRAN code of Fig.la and directed
graph representation in Fig. 1b. Suppose the programmer determined that
the value for F was erroneous and was searching for the cause. Beginning
in the source code at (%), the automated system-could develop the relation-
ship of Fig. lc, showing‘the input variables contributing to the value of F.
The values of these variables, decoded in the format implied by the source
code, would be presented to the programmer for analysis. If a subset were
found in error, the system would continue to track those paths until the

- problem was found. The amount of data generated could be regulated by an
upper bound on the number of variabies or depth in the relationship structure.

The interactive system would remove the tedious mechanisms and provide
a complete list of inputsl(some, quite obscure) to the area under investiga-
tion. The decode format indicates typing assumed by the source code which
may have been overlooked by the programmer. Many troublesome indirect
relationships can be quickly discovéred in the interacti?g investigation
which might be elusive in the manual equivaient.

When reasonable confidence éxists that the program is correct for test
cases and probably will not mutilate itself or the system, it is released
fo; use, and‘testing enters the second phase, In this second effort,
anomalies observed by users are examined and the sources of difficulty dis-

covered. As changes to the system are made to correct malfunctions, new

100

500

=3
= 100.0
= 1.0
= 2.0
= Xk

O X

Do 500 J =1,100,3
S = F¥*%3 - X*Y

C = X%*2 - 2%X*Y + Y¥%2

1 (6«)‘»

IF (C.1E.3) GO TO 100

= C-3
= Q**Z

P+l
X-J
0 500

8Nru'=1ruw

= ABS(C-3)
Y = Y + J¥2
Q = Q*R+Y

CONTINUE

@)

ABS(B*%2) - SQRT(A) 3
- - |

Fig.1l

(b)

-8-

errors may appear as other portions.react to the change and errors in
the modification are corrected. Hopefully, the process converges and
eventually all errors are purged from the program.

Whereas the first type ofkdebugging is characterized by catastrophic
failures and complete lockup in the program, the second typically
demonstrates sensitivity to a particular situation and paftial mal func-
tion in the operation. In iqitial debugging,close coﬁtrol is required and
very detailed tracing of program operation is performed to insure that
individual small sections of code are properly coded and translated,

After these low level operations are verified, the program is allowed
to run more freely and details of the systém examined for specific
types of anomalies. Usually, this level requires dumps of the system
and determmining what the process was doing when the error occured. The
suspe;ted error may be tested for repeatability and independence from
preceeding events.

Serial segmentation into phases allows some independence in the
total system that isolates large segments from one another in the
debugging venfure; these segments, however, tend to be quite large and
may not offer significant advantages in the debugging effort. Conversely,
the paging segmentation organization may not provide lucid properties
to the debugger. It does offer the advantage that interacting data is
typically located on the same page. It.is not, however, worthwhile |
to expend the processing time to organize pages if the program‘is in a
state of rapid change. Therefore, the advantages of a page organized
program will probably become useful in advanced stages of debugging réther
then at the onset, Similarly, the information contained in segmenting
for parallel processing and insights into the cooperation of program

subparts obtained will be more useful in advanced debugging than the

initial phases.

Rollback may actually increase the debugging eff;rt if the programmer
is éequired to code validity tests at rollback points. During initial
debugging, the designer may not have a good feel for operational qualities
of the program. Therefore, the production of the tests at rollback
points may force the programmer to analyze the system more extensively
than he would otherwise, with salutary effects. The production of the

rollback tests may be a fruitful middle activity between the initial

checkout and more advanced stages.of certification.

Hardware Failure Tolerance

Analysis of program tolerance to hardware failure encompasses two
aspects:

a) What is the minimum amount of available hardware the program
must have to run effectively?

-b) . How sensitive is the program to the failure.of a particular
hardware component?

We can further classify failures into hard faults and transient faults;

either of these types may produce loss of program control or errors in
data manipulation. Of these various types of failﬁre, the transient
error resulting in temporary loss of control or imperfect data is the
most insidious with high potential for nonrepeatable errors that may
go undetected for long periods of time. Hard faults resulting in signi-
ficant malfunction are readily identifiable and can be combatted with
proper backup. restart procedures after a minimum hardware configuration
has been reéstablished.
Phase segmented programs are the most straightforward representation

and require little additional hardware for proper. operation. Insensitivity

I

-10-

to hardware errors can be introduced by complete duplication at consi-
derable expense. Transient faults may be detected at the end of a phase,
however, the permanent damage may have resulted to the data base, requiring
a complete restart procedure from the backup.

Paged systems require more operational equipment to perform page
swapping. It can provide better transient fault detection by . detecting
suspicious page faults. From correctly confirmed rums, it is possible to
associate with each page lists of legitimate page fault locations. If a
transient error causes loss of control, the swap system could detect the
‘malfunction from this list and take appropriate corrective action. Undetected
errors would occur locally in a particular working set, hopefully with
constrained effects. |

Programs in parallel segmented parts are designed to run on mﬁltiple
processors implying that more hardware may be required for maximum time
. performance. This construcfion, however, allows for considerable flexibility
for graceful‘degradation of the system with hardware faults since any two
segments on different processors in parallel may be run serially on either
processor with no detrimental logical effects. Furthermore, since the
pamrallel segments run independently, faults from one segment do not affect
its-parallel companions on other processors; errors are localized,.

Rollback systems are designed to be particularly valuable for detection
of faults. They require more hardware for éaving states but can recover
successfully from such troublesome errors as transient loss of control.: They
further protect against permanent destruction of files by examining for |
correctness before updating the program state. When errors are detected,

the program always returns to a known good state for retrial.

-11-

Sensitivity to Software Logic Errors -

As previously described in the section on debugging, the discovery
of logic errors fall into categories of initial errors and advanced
inspections. Since initial errors are best discovered by straight forward
segmentation and the inadvisability of investing computational resources
for sophisticated segmentation schemes on questionably stable programs, we
will deal here with the problems associated with advaﬂéed logic errors
(i.e. "maintenance" problems).

The single most valuable tool in combatting software logic errors
is prevention. To this end, all the segmentation schemes provide insight
into the system interconnections enabling the programmer to}recognize how
tentative modifications will be received. Armed with this informétion,
collectively acceptable changes can be tailored. Paged organizations
provide some information on variables a ffected since interacting quantities
should have common pages. Parallel organization will indicate the precedenc?
relations among the components. Similarly, phase oriented organizations
will provide the interconnection of large components with each othef. In
all these cases, however, i@mediate neighbor information is more easily.
obtained, while complete interconnection must be obtained by transitive
relationships among the adjacent portioms.

After appropriate preventative méasures have been .applied, the
detection of persisting errors can be pérformed during trial rums of the
modified vérsion. In paged.systemg, the allowable page transitions previously
-collected can be used to indicate where changes have modified this operation.
This data will assist in spoflighting suspicious operational characteristics
that can be confirmed as correct or identified as errors.

If,:after modification, the parallel segmentation analysis is performed,
the precedence relationships can be compared befween thé previous version

and the new one. Changes in dependency- among the tasks should be investigated

-12-

and confirmed. Furthermore, the analysis will establish the precedence of:

new code to be confirmed with the hypothesized dependency.

Checking Values and Times

To verify the proper operation of the program, it is desirable to
examine dynamically the values of significant data. Furthermore, timing
investigation may provide meaningful information concerning the code
integrity of a section. The number sf inspection interfaces and their
location depends in part on our confidence in-the code section and how
closely we wish to monitor the operation. If too many points are monitored,
the inspection overhead may degrade the program's operation and produce
distorted timing results. Furthermore, the very mass of data generated

_may obscure overall operational considerations. If the program is not
monitored frequently enough, checkpoints may not be reached by nonterminating
program segments. By :the time the malfunction is discovered, the resulting
system state may be so mutilated that it is impossible to decide the cause.

With currently available techniques it is possible to catalogue all
variables used in the program and automate the insertion of the software
probes at all'places abvariables is used. Thus, once significant variables
have been selected, thé investigator is relieved of the task of locating all
occurrences and must simply code the appropriate check for the selected
variable. This checking may take the form of absolute bounds, conditional
situation dependent upon the dynamic value of other variables, or a particular
type of sequential activity (e.g.lmonotone increase by fixed increment)
possibly identified with a particular program section. The investigator may
choose to limit the inspection to only those activities which modify the
variable value (i.e. where it is an output of some activity), only where it

affects results (i.e. where it appears as an input), or only in a particular

-13-

section of the code (abridging the complete list of variable activity
pointers). Thus the investigator has the capability to specify the level
of detail desired in the monitoring by selecting the data to be observed.

The examination of timing information may require collecting
frequency of a segment's execution or the aggregrate time expended on a
section. - The first aspect is more easily implemented while the second pro-
vides additional details. This timing data could be used to improve the
program's performance or to study its operational variation to demand.
Actual time information appears more valuable in realtime applications and
where an unduly heavy or light computational effort appears contrary to
expectations.

All the segmentation schemes provide to some extent the recognition
of local variables used only for intermediate and short term results. Major
control data and variables of most significance is usually more globally
. defined. If the program is segmented in phases, the size of the segments
may be quite large. Inspections may be desired more frequently than the
phases change.

Although paged segmentation does not directly assign pages along
logical program lines, the reduction of page swaps and working sets tend to
correspond more to the program logic than a random selection. The checking -
of values and time at page swap times would allow considerable autonomous
processing to occur before examining resulté; permanent changes to the
program state in mass storage may be conditional on the checking outcome.

. Similarly, the parallel processing segmentation provides convenient and |
meaningful points of investigation in the interim between the completion of
one task and the scheduling of the next,

The rollback segmentation is designed specifically to optimize the

-14-

7

checking of intérim results before édvancing the program state. This
type of structure is predicated on minimum checking within acceptable
recovery and examination limits. Thus it is the most logical structural
type for this type of activity; In fact, the examination of acceptable
results .is critical to rollback operation since this analysis forms the

basis of decisions to proceed or retry.

Independence and Integration of Program Segments

Since all segmentation schemes by definition provide isolation -firom
neighboring code, they are all partially valuable for the independent
checkout of logically separate functions. Some of the techniques, however,
provide more reasonable structure than others. For example, thepage
organized structure may not provide exactly the type of separation required
for stand alone checkout. Furthermoré, in integration, the organization of
code on pages may change considerably from the form when anaiyzed for stand
alone operation. |

| Parallel sfructurés, however, will largely maintain their precedence
relationships. when integréted. Some of the tasks may become dependent or
establiéh a requirement for tasks external to the stand alone function,Abut
the relationships among the tasks within the segment maintain relationships
relative to each other. integration then requires relating boundary tasks
dependéncy between two subparts, preserving éamputational investments in
segmenting the sﬁbpart.

The most logical candidate for independent checkout is the phase oriented
structure where the parts of the program are identified with>distinct functions
and tﬁus quasi-independent in nature. Integration of these independently
.verified portions usually requires manual effort.since any iﬁterface require-

ment may exist. This problem may be minimized by strict definition of the

-15- .

communication structure between program subparts and verifying
compatible specifications between originator and user segments.

Rollback structures provide the ﬁecessary mechanisms for restarting
the program from the last rollback point. Therefore, its value is largely
in aséisting with the debugging of the integrated system by concentrating
processing power on the malfunctioning area rather than runniﬁg preceding

sections to condition the program state for the suspect segment.

Instruction Set and Linkage Effects on Reliability.

Since the instruction set and linkage characteristics enhance or
impede translation efforts from abstract concepts into machine compatible
form, their selection impacts the software reliability. Inconsistent
conventions, ambiguous operations, and poorly defined operational specifi-
cations contribute to coding errors. Conversely, concise and logically
compatible instructions greatly reduce misinterpretations or hardware
functions. Establishing common ground of understanding between hardware
operation and the programmer can take two forms. The classical approach is
through operational documentation and providing instructions useful to
collective target user classes. Alternatively, a machine with restructurable
qualities allows users to construct languages and conventions they désire.
Selecting a suitable instruction repertoire for the process can significantly
reduce code bulk, limiting opportunities for keypunch errors and providing
organizational clarity.

In accommodating the user, thé‘hardware usually assumes some additional
burdens. For example, the information storage might include typing informatiom
using tag bits as well as value information. Thus, generalized memory words
become executable instructions, integer data, floating point numbers, logical

values, array members, etc., The instruction set is reduced since argument

-16-

contextual information dynmamically augments the instruction op code
removing the necessity of type explicit mmemonics (e.g..Integer ADD, Half
word ADD, Floating Point ADD, Floating point double precision ADD, Logical
ADD, etc..become simply ADD).

Similarly, special operations may be included to accommodate operations
required by éegmentation schemes. In the coordination of parallel tasks,

a "fest and set'" instruction allows easy lock and key operations. With this
operation, one can simultaneously test for availability, obtain access, and
exclude other processors without resorting to elaborate software routines
(e.g. queued requests serviced by a master scheduler). Rollback implementa-
tion is facilitated by instructions designed for examining program state
éttributes, and allowing easy reloading of a previous state when errors are
detected. In paged systems, relative addressing is essential to efficieqt
operation. Program pages are not necessarily loaded in the same absolute

- location when swapped; this dynamic residence is accommodated by loading a
"base register' or performing page relative operations. The relative
addressing scheme may play an important role in detecting page faults (e.g.
an address overflow of the page boundary).

The desirability of tailoring descriptive constructs for a particular
purposé has long been recognized. This realization has resulted in the
development of macro assemblers, procedure oriented languages, and easy
subroutine specification. While these techﬁiques may offer the required degree
of flexibility,.the application of pyramided constructions seriously degrades
operation performance compared to systems written in the coméuter's native
tongue. With the advent of dynamically microprogrammable computer hardware,
the pofential exists to create instructions of comparable (and often improved)

execution properties. Since most programs utilize only a small fraction of the

-17-

sanctioned op codes, the user may choose to substitute a custom instruction
for one he is not using. Similarly, he can modify existing conventions for
compatability with the program's intent.

It should be noted that questions of instruction suitability is not
a static property since operational applicability changes as the program is
debugged. In the initial phases of debugging, the user might want a highly
investigative operations with close examination of data types for compatible
properties (e.g. identification of mixed mode operations) or possible tagged
data for trace purposes at the temporary expense of value precision and range.
Once validation has advanced and the program is placed in production, the
investigative procedure may be remoﬁed to streamline process execution; that
is, diagnostics become overhead after detectable errors are purged. If the
program requires significant maintenance, the diagnostie instruction set
could be reinstalled to assist integrity verification of the modified version
and assure acceptance by unchanged sections.

of course, an equivalent software test could be placed in the code to
perform checks with conventional in;tructions. Among the advantages of
instruction modification are speed and the stationary property of the software
code. Since the same code is used for both test and application, segmentation
schemes are not affected. Placing software checks in the code may affect the
program's segmentation into pages or pérallel tasks. When the checks are
-reﬁoved, the program must be analyzed for segmentation.

It is possible to err in defining instructions with microcode just as
in any other specification, but mistakes are likely to be more pronounced by
misformulated instructioms. Since the instructions are such frequently used
building blocks, errors here produce more.apparent malfunctions, easily

detected and repaired. Investigators would be less likely to encounter

subtle faults which might go undetected.

-18-

Diagnostic and protéctive hardware featurgs can be powerful tools in
the verification process. Such tactics as protected memory areas (e.g.
unprotected; read only, and execute only) are useful in preventing programs
from progressive mutilation that obscures error location. When the malfunction
effects (e.g. a location improperly modified) are known and the cause is |
undecidable, a "break point" feature which monitors references to the
symptom area may provide the fastest method of error focation.

One of the greatest causes of program malfunctions is the linkage of data
to subfunctions. The linkage may be provided dynamically in execution by
formal paiameters or compiled linkage using macros or common statements.
Problem sources include misunderstanding of the subroutine operation or side
effects from the execution. Since few languages require direct specification
of variables classified as inputs or outputs, the problém is compounded for
the user. One possible protection is assumption of all variables being
subject to change; only local copies of the reqﬁired data are coupled., If .

a parameter is modified in the subfunction, the results are ignored by the
calling routine. This scheme, however, is only applicable for formal para-
meter linkage} i

Another alternative which rectifies several problems again involves the
use of in memory tagging. Since the user and subfunction each have local
notions of inputs and outputs, they might independently specify tag conditions
for each class. The subfunction would 5e responsible for checking the tags
for'appropriatg typing. This scheme could further reduce problems of unequal
parameter list lengths and respond with a warning when the condition was
detected. Similarly, if tagé additionally reflect data typing, the subfunction
could confirm coupled data of consistent format. As beforé, when detected

errors have been rectified, the checking overhead might be removed.

-19-

Repetitive Use of Reliable Modules

When a frequently used activity is identified, it is typically isolated
as a subfunctionland takes the fomm of a subroutine, procedure, or macro.

The service subfunction is invoked by program sections requiring the activity.
This allows economy in coding effort, possible reduction on memory require-
ments, and increased confidence of faithful operation. Clearly, it is
superior to recoding the operational sequence each time since this would
increase chances of transcription erroré.

The subfunction manifestation will depend upon its functional charac-
teristics. We can categorize these characteristics as reentrant, serially
reusable, and unrestricted.

Reentrant properties require pure procedure subfunction specification;
aﬁy modificétions to data are made relative to the invoking call. Thus,
temporary values within the procedure itself are forbidden. |

Serially reusable code allows temporary modification in the subfunction
provided the original state is restored before exit. Thus, on a serially
used basis, the subfunction is identical on each successive application.

Unrestricted code may take any form and may perform differently
depending upon when it is used and how many previous executions have occurred,
Although the simplést form to code, efficiency in code production may be
offset by increased'deﬁugging time,

Suppose in a correctly functioning proéram, there is a subroutine with
formal parameters. If the subroutine is unrestricted in form, we must retain
a single central copy of the procedure which is shared by all invoking calls.
If the code is serially reusable or reentrant, we have the option of either-a
single copy or replacing calls with a macro expansion of the subroutine and

compiled linkage for a particular call.

S

-20-

If the program is parallel task oriented and subfunctions are reentrant,
a single copy or expanded macro are equivalent. If the subfunction is
serially reusable, a central subroutine.requires lock and key protection in
a.multiprocessor installation., Common usage of single copy, nonreentrant
subroutines establish a precedence relation among tasks potentially parallel
otherwise. To remove this restrictién local copies could be provided for
each invoking task unless the subroutine is unrestricted. Unrestricted
subfunctions require central copies with lock and key protection.

In page segmented programs, calls to subrouﬁines may produce undesirable
page swaps. Hence, restricted subfunctions expanded as macr&s would
materially enhance the operation. Little study has been performed on the
time decrease, space increase tradeoffs of this alternative.

In rollback segmented systems, central subroutines impose a restriction
on roll back point placement. If the analysis determines an optimal roll
back point for a program segment in the center 6f a subroutine, clearly this
point ié not neéessarily optimal for other subfunction calls. Here, égain,

the option of expanding like a macro would be potentially advantageous.

Language Processor Reliability Role

The language processor will bear considerable responsibility for the
automating analysis required to ease control and validation. Of course, it
is a necessary prefequiéite that this processing be highly reliable to avoid
introducing errors not intrinsic in the program specification. Since boot-
strapping validation process requires a firm basis, the language processor
will require considerable attention; anomalies must be quickly and effectively
repaired.

The language processor will be required to catalogue and correlate the

symbolic program realm to the machine ¢ompatible realization. Here the

-21-

variables and their use type are reéorded, the program graph is developed.
From this information, it is possible for segment producing programs (e.g.
parallel task recognition, fitting code to pages, linkage between phases,
etc.) to operate. Attention should also be given the language translatidn
propertiés such that the programmer's intent and control specification may
be lucidly displayed. |

Toward this end, the language should allow typiné distinction where
linkage to unfamiliar portions is performed. In subroutine calls, the
calling parameters could be distinguished as to input and output usage with
declarations of nonvolatile data.

The language processor should be capable of autcmating simple symboiic
relabeling to facilitate common nomenclature among the several components.
For example, if several segments utilize the same data,-the same symbolic
name should be used in both segments. This requirement is difficult to
realize in the initial stages of development since the coﬁmon name set is
unstable until the program has advanced in checkout. Furthermore, ex post
facto nomenclature may conflict with a current name in the segment, creating
problems in tﬁe relabeling procedure. Therefore, there mﬁst be coalescing
hierarchy such that more global variables are given nomenclature preference
for common linkage, local name conflicts can be automatically and completely
adjusted. Automated relabeling‘technidues are the only modification method
which appears to provide confidence of complete detection.

' Some language aspects that create barriers to relabeling are the linkage
by common and equivalence statements. Equivalence statements offer no real
difficulty when used for alternate symbolic names with the same structure.
When they are used to establish spatial reldtionships among sfructural data

(e.g. arrays), the mapping of old labels to new may be more complex. For

-22-

example, let there be two one dimensional arrays of size 9 and 10 items

called "A" and "B" respectively. With an equivalence statement that the

first element of B is identified with the second element of A, we have
established that the two arrays are skewed relative to one another. If the
relabeling procedure requires A to be relabeled as "TIMES" for symbolic

system consistency, then references to B must be related to entries of

TIMES. 1In this example, the transformation is fairly obvious in replacing
.appearances of B(I) with TIMES(I+l); in other situations, however, the changes
may not be ;o straight forward; even if practical, the transformed represen-
_tation may noﬁ provide more clarity.

Common data offers the potential for reorganizing data passed between |
routines and the relabeling of quantities in the common data base. For
example, data represented as integers in one program'mai be used collectively
in another routine as array elements (e.g. A, B, C, link with elements of

. COSTS(3) in another). In fact, this type of usage'may establish a hierarchy
éf data struéture in the program where one réutine is concerned with the

data on a higher level than its serviée subfunqtions. When the variables are
typed by the language (either explicitly or implicitly), the typing specified
by each routine using the common data should be compared‘for consisteﬁcy.
This examination would indicate occasions of misunderstandings in multiauthor
systems or when modifications are applied and serve to spotlight places where
"tricky methods" restructure the data. This automated examination should
include‘checks for the following:

1) Change of variable type

2) Scalars broken out of arrays

‘3) Array structure change (e.g..change in number or size of dimensions)

4) Misaligned array boundaries (e.g. where arrays do not fully cover

one another :between specifications)

=23~

Ihe language process can be of significant Qalue in the initial
debugging and éorrection effort, particularly when highly interactive systems
are available, by utilizing techniques of incremental compilation. In this
system, the program is structured on .a language statement level :with each
statement compiled directly and interconnected by an execution time super-
visor. The supervisor directs the execution of the independent code corres-
ponding to the sequence of statements, regaining contfol after each statement
has been performed. This allows the user to step through the program or
specify noninitial starting pointé that will concentrate on the particular
problem being investigated. Data cooperation is managed by the supervisor
using a retained symbol table to facilitate inquiries on a symbolic basis.
This structuré allows modifications to be made on a statement basis and only’

newly introduced code need be compiled before run results are produced.

-2~

II. PROGRAM VALIDATION-

1. Introduction

The concept of program validation by exhaustive testing of all flow
paths through large programming systems together with their input and
output relations is an intracﬁable task for interesting programs. Therefore,
all successful efforts at program validation must begin with specification
and utilization of program modularization and sub-unit structuring (some
of the related concepts are explored in the section entitled "Program
Structures"). It is the ﬁsual case that modularization in the design and
specification process proceeds from the 'top down'" while the actual coding
and debugging is carried out from the 'bottom up'". This implies that it
is necessary in the process of program validation to reconstruct elaborately
many local environments for program modules at the bottom of the design
specification tree. We specify in this report a program validation system
which is designed to enable the retention to a considerable extent of the
natural ""top down' outlook where this is desirable in the coding and vali-
dation phase as well as in the design specificatiop stage.

The characteristics of modular design appropriate for rigorous program
validation may be different from that desirable for modularizaﬁion to
produce convenience and Spéed in the actual coding process.

1.1 Modular boundaries must be as rigor&us as possible.

1.2 Multiple entries and exits, and transfers to incompletely
specified labels and program structures must.be avoided.

1.3 Shared data bases, whether explicitly transmitted pafameters
or global tables, arrays, and other structures, should have
restricted and explicit access mechanisms.

1.4 The validity of language defined characteristics of explicitly

transferred data should be rigorously examined.

=25~

2. Téchniques for Validation of Modular Programs.

Adherence throughout the modularization scheme of these properties

‘allows the development of a validation system based on the following

component techniques.

2.1

2.2

2.3

2.4

Automatic validation of modules through rigorous proofs of
correctness of the programmed'representation of the algorithms
(See Appendix A)

Automatic validation by exhaustive or selective analysis of all
flowpaths through selected modules.

Analysis of validify of data bases used by the modules. This
can be accomplished by examination of explicitly transferred
parameters and by automatic analysis of access and sequencing
mechanisms for global common data bases (See Appendix B.).
Rigorous modularization.allows the use of mixed execution-
simulation testing. That is, program modules may be replaced
in.the testing phase by simulationvof their functions. This
simulation may include such features as generation of limiting
test cases for calling and called modules and extensive validity
checking for transmitted data. Such simulation conveniently
allows total environmental testing of enly partially coded total
programs througﬁ the simulation and use of data structures which

are not yet implemented.

2.5 A further possibility whose convenience is enhanced by rigorous

"top down' modularization is mixed compilation-execution and

interpretation of source code.

3. Af Integrated Validation System

It is highly desirable to have an integrated programming (and hardware)

-26-

system reflecting this conceptual structure. This suggests that ideally.
there would be érdduced a programming system with a compiler and interpreter
for a problem source language and a comﬁiler for an appropriate problem
simulation language, all operating under a compatible control system. This
ﬁould clearly be an elaborate and expensive system. Indeed, the production

of such a system without the existence of errors in the system itself is
unlikely. A more economicél and reliable alternative is to develop a pre-
processor system for a standard ménufacturer supplied progrémming language.
Such a pre-processor would process language forms appropriate for the problem
area and to the simulation of the problem area. The translator would be,
however, to the standard high level language. It wbuld be capable of imposing
coding convéntions for the standard language which would imply and enforce
rigorous modularization, checking of explicitly transmitted parameters,. and
translation checking and validation of global data access. It could also
generate the environment necessary to allow calls to simulation modules or

to invoke an interpreter system for modules. It could, in addition,
convenientl& provide a partial execution trace by imbedding dump and trace
activities. The cost of a pre-processor system to function, for example

on FORTRAN, is an order magnitude less than the direct production of compiler-

interpreter systems.

4., Analysis of Components

We turn now to a detailed analysis of the problems and costs as associated
with the five component techniques. |
4,1 The "state of the art" of rigorous proofs of the correctness of
representations of algorithms in programming languages is in an
early state. It seems possible within the next two to five year

period to bring this to a fairly respectable state of automatic

4.2

4.3

-27-

analysis. At the moment,'there is much work remaining to be

done on identifying the properties of languages and the typés

of statement structures which simultaneously allow ready

application of rigordus mathematical analysis for correctness and
ease and convenience of problem formulation. We attach as Appendix A
a detailed report on work done in this area under this contract.

The generation of all possible tasks through‘modules of modest

size can still be a very significant, if not computationally
intractable size. It is, however, for most currently use& pro-
gramming languages, a problem which is quite soluble in terms of
reasonable costs. It is still, however, .important to be able to
selectively key upon partial aspects of the flow of control access
modules so as to obtain manageable flow graphs for logically coherent

concepts. It is also important to be able to key on critical data

values which determine flow paths of sﬁecial interest. A further

use of critical data values is to be able, in the flow analysis to

specify values, sets of values, or ranges of values, for these
variables to furtper select flow paths of spécial interest. Appendix
B to this report outlines work done under this contract toward the
automatic production of flow graphs and the use of critical data
values concepts. |

Analysis of data base validity factors into two portions;

Validation of explicitly transmitted information andAvalidatioﬁ

of access to global information. The validation of explicitly
transmitted information may occur through several mechanisms: by
explicit analysis in the source code, by analysis of language defined

concepts by the compiler or language interpreter, by hardware analysis

4.4

-28-

of data types and allowed location‘ranges (transmission of
arguments by reference only using a specified range'of'cells),

by embgdding of simulation modules or by interpretive execution.
This boundary interphase problem is a difficult one in that modular
testing isolates the consuming process from the supplying process.
This is a problem which has had exceedingly little study from the
basic computer science viewpoint. It is clear that a mixture of
devices will be needed. The study of access to global data is a
special case of the flow path analysis of section 4.2. The flow
paths studies can be selected to be those involving sequence of
access to common data and the actual access mechanisms. There has
been implemented, partially undef the support of this contract and
partially by the National Science Foundation, a program which carries
out analysis of access to data structures by producing a flow graph
of the access and sequencing process and comparing it to a flow
gréph or glow graphs for correct aécess and sequence mechanisms.
The use of mixed execution-simulation testing has a fundamental
effect on festing strategy. It allows the partial relation of
global or "top.down'" program development. A completely executable
program must have all of its modules coded before its key modules
can be tested in a complete environment. This usually means that
attention is focused on the codiné of the individual modules of

the design and specification of the environment of the individual
modules at the leaves of the tree. The mixed execution-simulation
testing allows that modules may be tested by execution at any level
on the tree with the balance of the operating environment being

simdlatéd. It would typically be the case that development of a

4.5

-29-

- simulated module will be és expensive as the development of the

actual module., Additionally, the normal circumstance will be that
a simulation will have to be carried out in the language used by
executable modules. This is a poinf which needs to be altered,

In some cases it will be possible to write a comprehensive environ-
mental simulator without having to reproduce in toto the modular
structure of the executable code. It is reahily possible to pro-
duce an integrated debugging system which would have a run-time
compatible problem source and simulation source through the use of
a pre~processor as described in Section 3.

The motivation for the use of an interpreter as a program vali-
dation tool is the ease with which traces of system.activity can
be maintained. The need for an interpreter, however, caﬁ be
lessened by the use of a pre-processor system which can assist in

the generation of partial traces. A particular advantage of an

interpreter is that it can be made to interpret the problem code

‘into convenient problem-oriented structures and formats. The

conétruction of an interpreter for rigorously segmented modules of
code is far less effort than that of an interpreter for a typical
general programming language environment. The use of an interpreter
only for small modules of code overcomes the principle problem with
the use of interpreters which is their extreme slowness and high
cost of operation. The enforcement of an appropriately rigorous
modular structure makes the userf interpretation a reasonable

tool for program vaiidity testing.

-30-

APPENDIX A

A Program to Aid in Proving Program Correctness

Rigorous methods now exist for forﬁaliy proving that a computer
program will behave correctly at run time. Currently, the most generally
useful of these is the inductive assertion method which consists of the
two phasés diagramed below. First, a set of conditions, called verification
conditions, sufficient to imply the correctness of the program is constructéd
by examining the program itself and a statement of how it is to behave at run
time. The second step then is to prove that this set of sufficient conditions

is satisfied.

Program —— Verification Proof of
Condition Verification Theorem ____gRun Time
Generator >Conditions " } Power Correctness

Statement of —
desired behavior

Phase 1

{ _ Phase 2

¥

< >
Both of these phases can be performed manually for sufficiently simple
programs, however, for more complex programs, mechanical assistance is
required to cope adequately with the large amount of details involved.

A verification condition generator program for the first phase of this.
method has been completed. This progfam is written in SNOBOL4 and oﬁerateS'
on programs in a language called Nucleus. This is a simple, but complete,
programming language designed in such a way that every program in the language
can be rigorously analyzed by the inductive assertion method. The language,
which has an ALGOL-like syntax, contains data variables and single subscripted

arrays of types integer, boolean and character. All variables are regarded

as global variables. The language contains assignment statements, go to

-31-

statements, if-then and if-tﬁen-else statements while statements, tﬁo

forms of case statements (computed multi-way branches), and procedure calls.
Procedures are parameterlgss, but recursive, and have no local variables.
The following example is a Nucleus program for evaluatiﬁg a polynomial of
degree < 100 by Hormer's method (nested multiplication). The coefficients
of the polynomial are contained in the array COEF in order of decreasing

XDEGREE

powers of x -- COEF[0] is the coefficient of and COEF[DEGREE] is

the constant term.

!NTgGER DEGREE s X § INTEGER ARRAY COEF[100)3 SINPUT VARIABLESS
'INTtGERvTERM; $INTERMEDIATE VARIABLESS
INTEGER PATX3 $QUTPUT VARIABLESS

PROCEDURE HORNER}

PATX = 03

TERM 3= 0}

WHILE TERM < DEGREE DO
PATX. 1= PATX®#X.+ COEF(TERM]}
TERM 3= TERM + 13

ELIHWS

EXITS

START HORNER3

The question of stating the correctness of this procedure is handled
by making two assertions, one at the beginning and one at the end of the
procedure. The.first is regarded as an initial assumption and the other as
a desired result. The procedure is considered to be correct if the desired
result is true whenever the initial assumption is satisfied. The HORNER
procedure together with a statement of correctness is shown below. 1In the
assertions, a variable name standing by itself denotes the current value

of the variable. A variable name followed immeidately by "0" refers to the

-32-

" value of that variable at the time the procedure was entered., For example,
the first assertion in the desired result states that values of X, DEGREE,

and the entire array COEF are unchanged by the procedure.

INT?GER DEGREE s X} INTEGER ARRAY COEF[10033 SINPUT VARIABLESS
INTEGER TERMj $INTERMEDIATE VARIABLESS

INTEGER PATXS $O0UTPUT VARIABLESS

PROCEDURE HORNER}
ASSERT 0 < DEGREE < 1003

PATX 03

TERM := 03

WHILE TERM < DEGREE DO
PATX t= PATX#X ¢ COEF[(TERM]}
TERM = TERM ¢ 13

ELIHWS

- oo
P n

ASSERT X = X,09 DEGREE = DEGREE,0s COEF = COEF40%
ASSERT PATX = SUM FROM 1=0 To I=pEGREE OF COEF(I)#X+(DEGREE=I)1

EXITS
START HORNERS

To apply the inductive assertion method, assertions also must be
associated with enough intermediate points in the procedure so that a11‘
loops are intersected-fthere must be no path pf control in the procedure
that can flow from a point p along some path and return to p without first
passing by some assertion. .In HORNER we can ;ssociate assertions as shown
below. The assertions express the 'partial computation'" that the procedure

.

has performed to that point.

=33~

INTEGER DEGREEs X3} INTEGER ARRAY COEFI[1003% SINPUT VARIABLESS
INTEGER TERM3 ' $INTERMEDIATE VARIABLESS
INTEGER PATX}S $OUTPUT VARIABLESS

PROCEDURE HORNER}
ASSERT 0 < DEGREE < 1003

PATX = 03
TERM 3= 03
ASSERT x Xe0s DEGREE = DERREE,O0y COEF = COEF,.0}

Al

ASSERT 0 € TERM € DEGREE+]} :
ASSERT PATX = SUM FROM I=0 Tp I=TERM=1 OF COEF[IJ#X+(TERM=1-1)3}

WHILE TERM < DEGREE DO

PATX 1= PATX#X + COEF[TERM)}
_ TERM 1= TERM « 13}
ELIHWS

ASSERT X = X.09 DEGREE = DEGREE,Oy COEF = COEFa03
ASSERT PATX = SUM FROM I=¢ To I=pEGREE OF cOEF(IJ)#X+(DEGREE~I)}

EXITS
START HORNERj}

Currently, these intermediate assertions must be chosen manually and
represent one of the most difficult parts of applying the inductive assertion
method. However, the search for these intermediate assertions frequently
has beneficial side effects. To find appropriate assertions requires a
very thorough understanding of the operation of the program, and attempting
to understand the program to the required degree frequently uncovers program
errors.

The verification condition genermtor program produces the.following

output for the procedure HORNER.

- e | 330
INTEGER DEGREE4 X} INTEGER ARRAY COEF([100]3% $INPUT VARIABLESS

INTEGER TERMY SINTERMEDTIATE VARIABLESS
INTEGER PATX} , $OUTPUT VARIABLESS

PROCEDURE HORNER3
(0+1)ASSERT 0 < DEGREE < 1003

{0)PATX =
{1)TERM =

(2¢1)ASSERT X = X.0+ DEGREE = DEGREE.0y COEF = COEF«03
(242)ASSERT 0 < TERM < DEGREE+1}
(243)ASSERT PATX = SUM FROM I=0 TO I=TERM=1 OF COEF[I]#X4(TERM=l=I)}

AR

(2)WHILE TERM < DEGREE DO
(3)PATX 1= PATX#X + COEFLTERMI3
(4)TERM = TERM + 13 :
(S)ELTHWS

(641)ASSERT X = Xo0» DEGREE = DEGREE.0y COEF = COEF.03
(6e2)ASSERT PATX = SUM FROM 1=0 TO I=DEGREE OF COEF[I]#X+(DEGREE~I)}

(6)EXITS
_ START HORNER

'PROCEDURE HORNER PATH 0 1 2

0.1 0 < DEGREE < 100

0 PATXe1=0

1 TERMe1=0

90000 00000 Q000080000000 e 0000000002 0gq00

2ol X = Xy DEGREE = DEGREEs COEF = COEF

242 0 € (TERM,1) < DEGREE+]

23 (PATX,1) = SUM FROM I=0 TO I=(TERMel)=1 OF COEF{I)®#X4((TERMel)=1=1)

PROCEDURE HORNER PATH 2 345 2

201 X = Xo0s DEGREE = DEGREE.Os COEF = COEF+0

2.2 0 < TERM < DEGREE+1

2.3 PATX = SUM FROM I=zg TO I=TERMal OF COEF(I)#X4(TERMal=l)

2 TERMSDEGREE .

3 0<TERMS$100 ® PATX,1=PATX#X+COEF[TERM]

4 TERMe1=TERM+] i
;..0000000100000.0.0I"""O"‘Ol.!'.'...l . . i
2,1 : X = Xo0s DEGREE = DEGREE,0s COEF = COEF«0 :
242 0 < (TERM,1) < DEGREE+]

2,3 (PATX.1) = SUM FROM I=0 TO I=(TERMs1)=1 OF COEF[I74X4((TERMs1)=]=T1)

-35- .
PRECEDING PAGE BLANK NOT FILMED

PROCEDURE HORNER PATH 2~ 6

201 : X = Xe09 DEGREE = DEGREE.0s COFF = COEF«0

2,2 0 < TERM < DEGREE+]

243 PATX = SUM FROM I=Q TO I=TERM=1 OF COEF[I]#X+(TERM=1=1)
2 ~ (TERMSDEGREE)

00 0000000000000 088¢q0C00tett000esep09dagss

6ol "X = Xo0v DEGREE = DEGREE,0s COEF = COEF.0

6e2 PATX = SUM FROM I=0 TO I=DEGREE OF COEF([I)#X+(DEGREE=I)

A listing of the program is produced in which control point numbers
have been inserted. These numbers are used to be able to refer to paths
of control through the program and to relate these paths back to the actual
program. The second part of the output is :the set of verification conditions.
Each verification condition has the form

Assertions at the beginning

of the path

Terms due to traversing the

path

Terms due to assertions at the
end of the path.

For a verification condition to be satisfied, the terms above the dotted
line must logically imply those below. Also the initial assumption may be
applied at any time in proving the terms below the dotted line. Fbr the
HORNER example, it can be proved that each of the three verification condi-
tions is satisfied, and hence HORNER is correct,

The verification condition generator that has been completed for Nucleus
programs is a first step toward semi-automatic proving of program correctness.

The program as it now stands could be applied to a fair number of actual

-36-

computer programs (provided they were first translated into Nucleus) to
assist in making rigorous proofs of correctness feasible. Further auto-

mation of the overall method will make broofs feasible for an even larger

class of programs.

-37-

APPENDIX B

Analyzing Sequences of Operations Performed by Programs

I. Introduction

Many interesting properties of programs can be statéd in terms of
the sequence of operations they perforﬁ. The uninitialized variable’
problem for example can be described as a violation of the fule: "In any
computation of a program using a variable X, some operation which assigns a
value to X must precede all operations which use the value of X." A second
example is found in communication between processes in a multiprogramming
system. Correct communication requires that each process obey a protocol
such as that of the "critical section" (1) in which the process must set an
interlock before assessing a shared data structure and Subsequently.must
release the interlock., The objective of the research described here is the
development and automation of a procedure for verifying that prograﬁs obey
given ordering rules on the sequences of operations they perform.

Traditional debugging by enumeration of cases breaks down for large and
complex programs such as operating systems. The procedure described here
uses verification rather than simulation techniques, which is to say that
programs are checked out by direct inspectioﬁ of their source code and are
not actually run. It consists of comparing a given source program with a
prototype for éorrect sequences of operations and reporting those parts of
the program whiéh cannot be matched with the prototype.

The structure of this paper is as follows. Section II describes the
basic idea of the approach, including the description of programs and their
computations by state graphs, algorithms for manipulating state graphs, and
the overall structure of the verification procedure. Section III describes

the realization of the procedure in an experimental analysis program and

-38-

gives more detail about the algoritﬁms used. A point of special interest
about the analysis program is that it has been applied to real programs
taken from a real operating system. Section IV summarizes the applications

to which the analysis program has been put.

II. Basic Concepts

This section summarizes the theoretical aspects of analyzing sequences
of operations. Although a certain amount of formalism is used, proofs and
detailed definitions are omitted for the sake of brevity. State graphs and
their correspondence to programs are defined first, followed by a general
technique cailed folding for manipulating state graphs. The class of program
characteristics analyzable by the state graph technique is defined in terms
of folding into a prototype graph. Finally, the overall structure of the
analysis procedure is stated and some general considerations are discussed.

A state graph is a directed graph with labeled edges. Several edges
with different labels may connect the same pair of.nodeé: and a node may
havé several edges with fhe same label entefing or emerging from it. The
nodes of the graph correspond to program states, that is, to the distinct
combinafions of values of all memory cells used by the program. The contents
of registers, such as ;hé instruction location or program counter, are also
included. The edges of tﬁe graph correspond to the sequential transitions
of the prograﬁ from state to state as it run;, and are labeled with the
symbolic operations performed.

Formally, a state graph is an ordered triple G'= (S, A, -) where S is
a set (the states), A is a finitg set (the operations), an& - is a subset
of the Cartesian product § x A x S. We write x 2 y if (x, a, y) is an
element of -.

| The state graph of a program explicitly describes the set of computa-

tions of the program in terms of paths through the graph. Sequences of

-39-

operations, or traces, are simply the-sequences of edge labels along such
paths. Unfortunately, the state graphs of actual programs are quite large
if not infinite, so it is impossible to deal directly with them. A
general technique called folding is used to compress and modify state
graphs in finite space and time.

Folding is the merging together of stateé whilé preserving the edges
involving them. Tﬁis is formalized as follows. A homomorphism of a graph

G = (S,A,») into a graph H = (T, A, -») is a mapping f: S » T such that"
-1 . . . a .
X >y in G implies £(x) - f(y) in H.

If such a homomorphism exists then H is a folding of G. For a thorough
discussion of graph homomorphisms, see (2).

It is easily shown that since a folding preserves individual state
transitions, it preserves paths and thus sequences of operationms. Said
-another way: If ab...c is a sequence of operations in G, and H is a folding
of G, then ab...c is also a sequence of operations in H. Note ho%ever that
the converse is not true. A folding can introduce spurious traces unless
its inverse is also a folding. Whether or not the spurious traces do any
harm in the analysis depends on the context in which the folding occurs.

The general strategy is to keep the state graphs as folded as possible without
introducing undesirable'spufious traces.

The foregoing definition gives no hint.as to what an appropriate
homomorphism isllike. In analysis of programs, foldings almost always can
be defined by ignoring seiected program variables. If the variables of a
program are divided into two sets, one to be preserved and one to be ignored,
then the program's state set.can Be considered to be a Cartesian product
S = A x B, where A represents the valﬁes of the interesting variables and B

those of the uninteresting ones. Assuming this has been done, an appropriate

-

-40-

folding is the projection mapping f(a,b) = a, which simply discards the
uninteresting variables, Actﬁal.foldings can be much more selective than
this, ignoring variables only in parts of the state graph for example.
Assembly language programs themselves are extreme examples of folding
of their state graphs, in which every variable except the program counter is
ignored. The states correspond directly to the addresses of instructions
(program counter values) and the symbolic instructions label the transitions
from state to state. Throughout we label the edges corresponding to condi-
tional branches with the outcome of the branch. The folded state graph
directly defined by a program is a simple modification of the program's
flowchart, with the operations labeling the edges rather than the nodes.
Folding has several uses in the analysis of programs using state graphs.
It allows finite representations of infinite state graphs. It may be used
to manipulate a state graph by unfolding it in some ways and refolding it
in others to get a more explicit or compact représentation of interesting
sequencés of operations. Last but not least, it provides a characterization
of the kinds of properties that can be analyzed using state graphs. The last
will be described next, using an example and then a definition.
Dijkstra's "critical sections" are a tool for coordinating asynchronous
parallel processes. They are defined in terms of four primitive operations:
P - set an interlock which preveﬁts any other process from performing

the P operation until this process has performed a V operation.

V - Release the interlock.
A - Access the shared data structure protected by the P and V operations.
€ - Any other (irrelevant) operation.

A process is defined to be correct in its usage of these operations if and

only if its state graph can be folded into the following prototype:

€

The node at the left represents the noncritical part of the program,
and the node at the righf is the critical section. The correctness
criterion defined by the prototype is that a program may not access the
shared data or do a V operation if it is not in its critical section, that
it may not halt or do a P operation when it is in its critical section,
and that the P and V operations switch the program between the noncritical
and the critical sections.

As suggested by this example, the properties which can be verified
using state graphs are those which can be stated by defining a prototypé
into which any correct program should be foldable. All program verifica-
. tion techniques must eventually appeal to intuitively acceptaﬁle standap?s
of what makeé'a program correct. The protofypes play this role here. Tﬁe
objective is not to verify the prototype in any way, but rather to decide
if a given program can in fact be folded into fhe prototype.

The technique for verifying that a program can be folded into a given
prototype is divided into three steps:

A) Convert the program}s symbolic source deck into the flowchart-like
folding which ignores all variables but the program counter.

B) Transform the initial folded graph to represent distinctions in the
values of "critical" variables and to eliminate superfluous detail,

C) Attempt to fold the transformed gr#ph into the prototype and report
success or failure. If failure i; reported, identify the portions of
the program which could not be folded into the prototype.

The details of automating these three steps are discussed in section III.

——— e —

-42-

There are, however, several points which deserve further discussion.

Referring back to the critical section prototype, note that all
"uninteresting' operations were lumped together in a single operation
labeled € . Note also that the prototype allows such operations to be
freely inter5p¢rsed with the interesting operations in any legal sequence.
This is a common phenomenon in prototypes and deserves some special treatment
as it can be used to fold considerable uninterestihg'détail out of the state-
graph.

An operation is "unitary" if it appears in the prototype only on unit
loops. (A unit loop is a tramsition x i-z which does not change the state,)
It is "uninteresting'" if it is unitary and every state of the prototype has
such a unit loop. "In the critical section prototype, A is a unitary operation :
and € is uninteresting. An edge of the program state graph is unitary or
uninteresting if it is labeled with a unitary or uninteresting operation.
Uninteresting edges are also called null edges. Such edges érovide a special
opportunity for folding the program state graph as follows:

1) Any two nodes connected by a unitary edge may be folded together.

. The fesulting grap? will be foldable into the prototype wherever
the original was, because the two states in question must fold into
the same state of the prototype due to the unitary edge connecting
them. |

2) Once the above folding has beeﬁ accomplished, all unitary operations

in the program state graph appear as unit loops. Fdr uninteresting
operations these loops may be eliminated entirely since it is known
that they will be allowéd in the prototype.

It should be noted that the general folding technique described above

can -introduce spurious illegal sequences if an illegal sequence already exists.

-43-

For example, consider the eéffect of adding a null edge in parallel with
the V edge in the prototype graph of Figure 1. This corresponds to a
program's illegally jumping out of its critical section without releasing
the interlock. Theillegal sequences generated contain an excess of P
operations. If the two states are folded together then spurious illegal
sequences containing an excess of V'opefationé are also generated.

The algorithms described in Section III avoid the generation of
spurious sequences by constraining the application of folding. For example,
the "only successor" rule allows folding of nodes x and y withAthe null
edge x y whenever y is the only successor of x. Such restrictions make
it considerably easier to reconstruct the illegal path in the source pro-
gram given an illegal sequence in its folded version.

The need for step B, which unfolds and refolds the state graph is
best illustrated by an example. The following fragment of an Algol program

- contains a disguised critical section.

for I: = 1 step 1 until 3 do

begin
if T = 3 then V;
if I = 2 then A;
if I = 1 then P;
end;

Figure 2
Here P, V, and A are the primitive opérations to be matched against the

critical section prototype defined earlier. The initial state graph generated

-4y

from this program fragment has the form:

I¢l 151\r1_<_3 I#3 142 I#1 Iel+1)
‘ >0 >0 > > >0 O
‘ =3 1=7 I=1
1>3 : O v A P

Figure 3.
In this example the variable i is critical in the definition of the
actual as opposed to apparent flow of control. If the graph were simply

folded to eliminate all operations except for P, A, and V the result would be:

.« e . \ P,V,A, or
7/

Figure 4
This graph cannot be folded into the prototype. Thus the graph must be

unfolded to reflect the distinct values of I, giving the intermediate result:

Iel 1<3 I#3 I#2 I=1

>O O >O >O >O O —
IZ—I+\IOI_<_3~ I¢3Xo‘1=2\o A\Ola‘l (1=2)
N,
7 4 7 7/ 4 \J

n

G—I+1 1>3 : A '
NG

Figure 5

4)

~
.
.
.

@

If this second graph is folded by deleting insignificant operations,

the result is

...—}O. P)O A \O v . >O Yoo

45~

which obviously does fit the prototype.

The point of this example is that the initial folded graph may need
to be unfolded for certain variables which play a critical role in deter-
mining the sequences of significant operations. The unfolding is done by
splitting selected nodes of the graph into separate copies for each
different value of the critical variable. This implies that a finite set
of such values must be known. This is a restriction oh the method, but
fortunately critical variables usually satisfy the restfiction.

The splitting procedure has been automated with one major omission:
the identification of critical variables. This is accomplished manually
by input to the analysis program. Overlobked.critical variables are
quickly found since they result in spurious paths which cannot be folded
into the prototype.

One major class of critical variables is identified automatically.
This is the class of subroutine returns. State graphs répresent sub-
routine structure as follows. With each subroutine is associated a variable
which identifies the points at which the subroutine is called by distinct
values, - This‘return variable is set before the subroutine is called, and
the subroutine returns to the proper point by branching on the value of the
return variable. The return variables are automatically considered to be
critical by the analysis procedure, with the result that a separate copy
of the subroutine is inserted at each péint of call by splitting proce-
dure. The finitude restriction on critical variables implies that recuréive
subroutine calls cannot be handled.

The final step, folding the transformed state graph into the proto-
type, is accomplished by a straightforward matching process which defines
the'degired homomorphism. The process starts by matching the starting
state éf the program to the starting state of the prototype, and extends

the matching to the rest of the graph by propagating matches based on the

-46-

homomorphism rule that x 2 y implies £(x) il f(y). It is simplified by
requiring that the prototype be deterministic. This is easily accomplished
manually, either by inspection or by use of the power set techniques

borrowed from the theory of finite automata.

III., Techniques

The ideas and methods of the previous section have been implemented
in a program called TRACE. TRACE is divided into three independeﬁt
sections which sequentially perform the major steps in producing a compact
state graph for a given object program. BUILD reads the source code and
generates én initial state graph. SPLIT resolves questions which arise
when the program branches on the values of critical variables. CLEANUP
performs final folding and outputs the graph in various forms suitable for
external analysis, and may also immediately verify that the object program
does or does not conform to the order-of-operation rules specified by the
user-supplied prototype graph.

1., Building the State Graph.

The only major inputs to TRACE are fhe source code of the object
program and a list specifying which instructions or operations in the
source code are to be considered interesting. This list must always
contain all instructions which affect the flow of control within the
object program such as jumps, branches,‘subroutine calls and returns, and
program stops and ends. Additional items on the list will depend on the
application. In the table interlock example, the operatioms which reserve,
access, and release the table will be included.

In_the present version of BUILD if these operations of interest are
not explicitly coded in one or two lines or with a macro, the source

code must be "doctored" by the user; a unique instruction must be invented

-47-

to represent the interesting operation,land must be inserted at the
appropriate points in the code and included in the list of interesting
instructions. Occasionally unobvious code may have to be rewritten;
for example, table jumps must be replaced with explicit branches.

BUILD reads the source code one line at a time selecting those
lines which have location labels or whose op-code is on the interesting
instrﬁction list, and ignores all other lines. For these interesting lines,
appropriate additions are made to the state graph. Labels cause the
creation of a new node corresponding to the state of thé machine just
before the labeled instruction is executed. fhis new node then becomes
the "current" node. These program locations labels are attached to the
nodes so that later the user may easily see which nodes correspond to
which sections of the source code. Jumps cause the‘creation of a null
edge between the current node and the node corresponding to the location
jumped to, and the creation of a new current node.. Application-dependent &
interesfing actions such as semaphore operations cause the creation of an
appropriately labeled edge from the current node to a new node corresponding
to the new state of the machine after the interesting action has ﬁaken
place.

BUILD may be told by the user to keep up with the value of certain
critical variables which affect the flow of control within the object
program. When these variables are set to a value in the object program,
this information is attached to the currect node. When the program
branches on the value of these variables, BUILD creates two null edges
from the current node, and tags the edges with the condition under which
each path is taken. For éxample, if the variable SWITCH has been
designated critical, the segment of source code in figure 7 Qill result

in the graph segment of figure 8.

. .

e et o e

JPOS LOC1
P J
LOAD 1
STORE SWITCH
JuMp LOC2
LOC1 LOAD 0
STORE SWITCH
LOC2
LOAD SWITCH
JZERO LOC3
v J
L0C3 .
(Locl) €
SWITCH = 0K

-48~

branch to LOCl if (acc) > O

reserve table J

SWITCH 1

unconditional jump to LOC2

(uninteresting code)

SWITCH O

branch to LOC3 if SWITCH = O

release table J

Figure 7

P(J)

SWITCH =1

SWITCH =1

O

Figure 8

4o-

When a branch is made on a value which BUILD has not been told is
critical, two untagged edges result, and the state graph contains a non- -
deterministic branch such as the one from the top node of figure 8. BUILD
automatically handles subroutine calls and returns as setting and branching

on, respectively, the value of a generated critical variable.

2. Splitting.

The directed graph produced by BUILD contains complete.information
about the sequence of operations which the ojbect program does, or may,
perform, but it will generally be too large and too complex to be useful.
The folding techniques for reducing thé size of the graph are described in
III.3. The complexity arises because of the conditional edges which result
from subroutine returns and from branches on other critical variables.
SPLIT resolves such conditional paths by creating two or more copies of the
graph segment corresponding to the (possibly) different sequences of actions
‘ performed as. the éritical variable takes on .its range of values. This
splitting process begins at the node from which there are conditional edges
and propagates backward along the directed graph to the nodes at which the
critical variable acquired known values. For example, from the graph

segment of figure 8, SPLIT will produce the gfaph segment of figure 9.

@oc3) VY V() ' v

O

Figure 9

_s0-

SPLIT keeps a pushdown stack of "question nodes", nodes from which
there are copditional edges. This stack is initialized td contain all the
question nodes in the graph originally produced by BUILD. SPLIT begins each
execution of the splitting algdrithm by considering the top node of the
stack, If it does not have associated with it answers to all of the questions
on its outgoing edges, this node is split, the questions propagated back onto
its incoming edges, and all of its predecessor nodes ;re pushed onto the
stack. Loops are handled by marking each copy of the split node with the
corresponding value of the critical variable. When the stack is empty,

SPLIT terminates.

3. Folding.

The initial state graphs produced by BUILD can be quite large; for
example the graphs representing oberating system programs written in
CDC6600 periphial processor assembly language averagé about one node for
every three lines of executable source code, and about 1.5 edges per node.
(Thése ratios will probably vary depending on the source language and nature
of the program.) The splitting algorithm greatly increases the number of
nodes. Thus both to conserve memory and in order to reduce the amount of
work to be done by subsequent portions of TRACE, it is imperative to reduce
the size of the graph és much as possible at each stage of the process. This
reduction is éccomplished by folding. Foldiﬁg may introduce new traces into
a graph, and although the general folding rule given in Section II will never
int?oduce spurious illegal traces into a graph which did not already contain
at least one, the folding rule can be modified so as never to introduce them.
It can be easily shown that appliing the following two rules will never
introduce spurious illegal traces: i) If node I is directly connected to

nodé J only by a null () edge from I to J, and either a) I has no other

-51~

successors, or b) J has no other predecessors, then I and J may be combined.
1) 1f gﬁere is a null edge from node I to J and a null edge from J to I,
then I and J may be combined.
In addition, null edges from a node to itself, and one éf a pair of
identical edges between the same two nodes, may be eliminated., When two
nodes are combined, location labels and information regarding the value of
variables attached to either of them are attached to the combined node, with
duplications eliminated. Nodes connected by a conditional edge are never
combined.

The above rules are incorporated into a routine called FOLD which applies
them in turn to each node in the graph. If any combinations were made in a
ﬁass through the whole graph, then FOLD again applies the rules to every
node, and the process is repeated until a pass has been made in which no

new combinations occurred. Applying FOLD to the graph segment of figure 9

. produces the graph segment of figure 10.

(LOC1, LOC2)

P(J)
c (LOC2)
V{J)
(LOC3) =
Ny, Figure 10

-52-

FOLD is applied to the graph as soon as BUILD has finished and is
usually able to cut its size in half. During the execution of SPLIT,FOLD
may be called whenever memory gets crowaed; and is always called when SPLIT
has finished. It has been found that at this point even very large object
programs will be represented by graphs having no more than 40 nodes, and
usually less. It therefore becomes practical in CLEANUP to apply folding
rules with more sophisticated criteria for combining states:

iii) Any two nodes whose sets of outgoing edges are identical, with
respect to both labels and successor nodes, may be combined.

iv) 1If there is a closed path, no matter how long, consisting entirely
of null edges from a node back to itself, then all the nodes along
this path may be combined into one node. (Notice that this is a
generalization of rule ii; in rule ii the length of the‘path is just

. two)

When all of the folding rules have been applied to every node in the
graph without any new combinations occurring, the graph is completely folded.
CLEANUP will then output the final graph and may also try to match the graph

against a prototype graph.

IV. Applications and Conclusions

The program called TRACE, described in the previous séction, is an
experimental version of what we hope will become a useful tool for program
verification and system debugging. Its primary purpose so far has been to
verify that the techniques described in this paper are in fact practical. In
its present form TRACE is written in FORTRAN and reguires 42008 words of
memory on a CDC 6600. From the runs that have been made, it appears that
TRACE requires less than 2 seconds of central processor time per 100 lines

of source code to produce the final state graph for a program.

53~

Despite its experimental nature, TRACE has been used to verify one
aspect of the UT2 operating system uséd at the University of Texas Compu-
tation Center. TRACE has been run on 6‘of the system programs which access
the Job Status Table to verify that they all adhere to the semaphore protocol.
It can be used in its present form to verify that all programs adhere to
the correct protocols for reserving channels, disk and ECSbspace, etc,

The state graphs produced by TRACE are of use in connection with a
major performance measurement and evaluation project currently in progress
on the UT2 operating system. This project includes an event driven trace
which eventually produces directed graphs representing sequences of actions
actually taken by programs including system programs (3). All these events
can be detected by TRACE in the soufce code of the same system programs. Thus
the graphs produced by TRACE can be used to preset the event tracé. In -
addition, comparison of the two graphs prodﬁced by these two different methods
helps to verify each method and may indicate sections of source code seldom
or nevef executed, sections which are heavily used, etc.

Most of the problems encountered so far in impleménting the techniques
described in this paper arise in the input and recognition phase in which the
initial state graph is produced from the source code, Not all intereéting
actions are automatically recognized. The value of critical variables may be
set by an input statement., At presenf such problems must be handled by
modifying the source code. An average of about one modification per 75 lines
of source code have had to be made by hand to enable TRACE to correctly recognize
all interesting operations.

Another area for future research is language independence. The fact that
source code opérations which are to be considered interesting are input at
run time indicates that TRACE could be run on programs written in different

source languages with little or no modification, but this hypothesis has yet

NS

. =54~

to be tested. : :

A great deal of research needs to be done to determine just how many
interesting properties of programs can be stated purely in temms of the
sequences of operations they perform, and for those properties which cannot
be so described, whether or not any state graph techniques can be applied to

them.

REFERENCES

1. Dijkstra, E. W. Cooperating Sequential Processes, In Programming
Languages (F. Genuys, ed.) Academic Press (1968), 43-1l12.

2. Hedetniemi, S. T. Homomorphisms of Graphs and Automata. Technical
report, Communication Sciences Program, The University of
Michigan, 1966.

3. Sherman, S., Howard, J. H., and Browne, J. C. A Comparison of

Deadlock Prevention Schemes using a Trace~Driven Model. Sixth
Annual Princeton Conference on Information Sciences and Systems,
Princeton, N. Y., March 1972.

-55-

III. Redundancy Techniques: Roll-Back and Recovery

Introduction

Rapid and smooth restoration of a computing system after an error or
malfunction is alWays a major design and operafional goal. Hardware failur-
es can be detected and corrected by suitable diagnostic and maintainability
procedures. Software design errors could be hard to detect but once detect-
ed corrective procedures would be easy to implement. The majority of opera~
tional failures occur in the hardware processors, memory, and I-0.. On-line
diagnosis and use of error checking codes, have been effective in reducing
the effects of these hardware malfunctions. After the malfunction is correct-
ed, the problem arises as to where to restart the program. It may not always
be feasible to run the entire set of programs again from the start, either 'due
°_ch time limitations or since the required data has been modified. A better
strategy would be to have a number of roll back points (or check points) with-
in the program at which certain program and processor.status inform_ation could
be saved. If a fault or malfunction is detected, the program is rolled back to
a previous check point where the system is known or proven to be in good opera-
tional condition. '

Various strategies are used to reduce the impact of interruptions or mal-
functions both to the system and to the users. Operating System 360 as used
in Model 65 is equipped with a set of programs called the Recovery Manage-
ment Support which embodies a number of methods. The recovery methods de-
pend upon the nature of t_he malfunction. In the I/0 area, re-reading of input
data with parity errors is common. If error subsists even after repeated retries
the system could consider reconstruction of damaged data (error correction) if
possible. In the‘case of the processor errors, the instruction may be retried
if feasible (i.e., if its operands were not modified by the instruction). The
most important technique is to provide check points in all programs so that pro-
- grams could be rolled back to a previous state and computation resumed.

If an error is detected while a program is being processed and if the
error cannot be corrected immediately, it may be necessary to run the entire
program again. The time lost in running the program again may be substantial
and in some real time applications (notably aerospace and process control)

critical.

-56-

-

At any stage in the processing of a program certain information is
required by the program for computation to proceed successfully. A state
at any stage in the processing of a program, will be defined as the informa-
tion (variables, data, programs..) which may be subsequently used by the
program. Saving the state of a program is the process of making a copy of
the state in secondary storage. Clearly, the length of time spent in saving
a state is propoftional to the amount of infofmation that has to be copied.
Loading a saved state is the process of setting all the registers, primary
and secondary storage etc. to the values stored in them when the state was
saved. "Recovery time can be reduced by saving states of the program at
intervals, as the program gets processed; if an error is detected the program
is restarted from its most recently saved state. If the states of the program
are saved too frequently, an unnecessarily large amount of time may be spent
in saving states. If the states of the program are saved too infrequently an
unacceptably large recovery time may result. The resolution of the tradeoff
is the subject‘of our discussion.

Only transient malfunctions are treated in this paper. It is clear that
permanent malfunctions cannot be treated by rollback alone, since, if a perma-
nent malfunction does occur and is detected, and the system starts recomput-
ing from a rollback point, the very same permanent malfunction will be detect-
ed again. On the other hand, rollback is a very useful tool for handling per-
‘manent malfunctions, when it is used with some other fault-tolerant technique
which effectively switches off the malfunctioning device. This is discussed
in greater detail below.

We will now discuss some areas where rollback can be profitably combin-
ed with ot};er fault-tolerant techniques. The earliest attempts at obtaining ultra-

(4)

reliable systems attempted to achieve reliability through redundancy . Triple

Modulo Redundancy (TMR) and other methods of fault-tolerant computing using

several identical computing units, operating in parallel on the same data, with

a vote taker, (see figure 1) have been discussed in great detail (5'6’7).

slightly different system, using TMR and stand-by spares which are switched

(8)

in when needed, has been described by Mathur and Avizeinis . This system

INPUT

-57-

| INPUT 3y

II

OUTPUT

OUTPUT

INPUT

III

OUTPUT

Triple-Modulo Redundancy

Figure 1

vote-taker

-58-

is called the hybrid system. The operation of the hybrid éysté_m, in brief,

is as follows: three identical computing units are operated in pafallel, and

a vote-taker compares the outputs of each unit with the others (see figure 2).
If the output of one unit does not tally with the other two, it is switched out
and a stand-by spare is powered on to take its place. However, after the
standby unit is powered on, the registers, memory, and progi'am status word
must be loaded with the appropriate information, before processing can con-
tinue. One way of doing this is to have rollback points; the three units, in-
.cluding the stand~by unit are loaded with the information saved at the last
rollback point, and processing continues from there.

Any system which uses spares is confronted with the problem of load-
ing the powered-onspare. One method for solvi.ng this problem is to use
rollback. Rollback at periodic intervals was used in the SABRE 7090 System,
and in the IBM 9020 System used by the FAA.

We will make the assumption thét if an error occurs while a task is be-
ing processed, then the error is diagnosed before the task is completed. Sup-
pose an error occurs while a task is being processed and suppose it is not
diagnosed; if there is a rollback point immediately after the task is complete,
then the information which is saved at the rollback point will be faulty. Sub-

sequently, if the error is diagnosed, this faulty information will be loaded,

and the computer will continue processing from the rollback point; eventually
the same error will be diagnosed again.

If the same error is detected after rolling back, the system should con-
clude that there is either a permanent rrialfunction, or that an undiagnbsed error
occurred before the last rollback point. ‘The program may be rerun from the very
beginning and if the same error is detected again, one may reasonably conclude
thata penhanent malfunction has occurred, and a reconfiguration made to
switch off the faulty unit, |

Rollback can be used in two quite different ways. I_n some systems,
the programmer preanalyzes his program and specifies where rollback points are to
be inserted. He may decide where to insert rollback points in either an intui-
tive manner or by making estimates about relevant parameters in his program .

(such as the maximum time that may be required to process a given task in the

-59-

INPUT ACTIVE 1 OUTPUT
INPU"I‘ > INPUT) ACTIVE II OUTPUT
INPUT ACTIVE III OUTPUT
|
|
]
STAND-BY SPARE 1
SPARES
| |
|
SPARE n

Hybrid System,

Figure 2

vote taker

-60-

progfam) , and by using a mathematic_al model to aid him in the decision making.
In other systems rollback points are inserted at periodic intervals(M) , lrres-
pective of the particular programs being run. We are concemed with the former
case, Where rollback points are tailor-made for a particular program.

The amount of information that has to be saved so as to be able to re-
start a program at that point may vary widely from one point in the program to
the next. We assume that there is a sufficient amount of secondary storage to

store the state of a program at any time. The secondary storage used may be a

(9)

large core storage unit °, drum, disk, or even magnetic tape. The "cost" as-
sociated with a rollback point is the time taken to save the state of the system
at that point; the time clearly depends on the amount of information that has to
be stored and on the type of memory used to store the saved state. These fac-
tors are included in the mathematical model described later. -
| This paper uses a graph model to describe a program. Graph models
have been dealt with extensively in the literature, see lOA, 11, 12, 13. Program-
mers have traditionally used flow charts (which are graphs of a kind) as aids
in programming. In this paper, we assume that a programmer can analyze his
program (or flow chart), and represent it as a sequence of tasks. A task may
be an instruction, or several instructions including conditional branches. In
our paper, we will generally make a coarse partition of the program into tasks,
i.e., each task will consist of several instructions and will involvé a substan-
tial amount of processing time; the range implied by "substantial" depends on

the model used and will be discussed later.

The 'é-éqﬁéncé of tasks proce‘s-s:“ed-rAnay chahge' fro‘rr;’(;r‘;é rﬁn of' thé proAgfathn”
to the next due to conditional branch statements. However, we shall assume
that no task is repeated; if a task is iterated in a program, each iteration of
the task may be considered a distinct task, or the iterations may be coalesced

in the manner shown below. Consider the flowchart in figure 3, where a task

is iterated n times. The iterations may be coaelesced into one task, or into a
sequence of one or more tasks; each of the tasks in the program graph may cor-

respond to several iterations of the task in the flowchart..

3 . TR T —

TASK 1

No I<N Yes

TASK C

Each task Ci

subsumes some
iterations.

-61-

Figure 3

|

TASK A

All of the iterations of
task 1 are subsumed with~
in task A.

TASK B

TASK B

Task Bl subsumes some

iterations of task 1, and
task B, subsumes the re-
maining iterations.

-62-

The algorithm makes use of estimates made by the programmer, on
the maximurﬁ amount of processing time required by a task. Admittedly,
it is impossible to design an algorithm, which, given any program, deter-
mines the maximum time that may be required to process each task in the

program. However, it is possible for a programmer, to obtain estimates

of worst case bounds for his particular program. Indeed, in many computer
installations, programmers have to submit estimates of the maximum time
required to process their jobs. It is important to note that in installations
where a programmer is allowed to specify rollback points, he must make
estimates of this sort, and then make intuitive decisions based on these =
estimates. Our objective is to clarify, quantify and formalize his decision-
making procéss. The accuracy of the decisions (intuitive or formalized)
clearly depends on the accuracy of the estimates.

Obtaining a program graph from a program is not inexpensive. The
programmer must analyze his flowcharts and make estimates of several para-
meters. Many (probably most) programs are short enough so that no roll-
back points at all are required. In many other cases, the advantage gained in
having tailor-made rollback points is not worth the time spent by a programmer
in obtaining a program graph; in these cases rollback points at fixed inter-
vals are sufficient. However, there are some cases, where the costs of slow
error recovery are high, where the system runs a comparatively small set of
programs over and over agaih, and where the advantage ot tailor-made roll-
backs outweighs the time spent by the programmer in constructing the program
graph. We are concerned with cases of the latter type.

The decision to insert rollback points clearly depends on the importance
of speedy error recovery, i.e. the penalty incurred if a program does not run to
completion in a prescribed amount of time. In some real time applications, it
is critical that a program run to completion in some given amount of time, where-
as, in most commercial applications the loss incurred if an error occurs is just

the computer time wasted.

-63-

A programmer has to analyze his. flow chart ahd represent it as a

- sequence of tasks (program graph) only once. Hence, the greater the
number of times a program is run, the moré the benefit of tailor-made roll-
back points. So, the decision to have tailor-made rollbacks clearly de-
pends on the expected number of times the program will be run.

Programs with short processing times do not need rollback points
at all. Thus, a program that is worth analyzing for tailor-made rollbacks
must have three characteristics:

(1) The program must require a substantial amount of processing

time, |

'(2) The application of the program must be such that quick error

recovery is crucial. |

(3) The same program must be run a large number of times.

-64-

Préblem Formulation

A program will be represented by an wmdirected graph where vertex i
corresponds tc') task i and edge (i,j) exists if and only if task i is followed
by task j with non-zero probability.

Associated with vertex 1 of the graph is a real number ti which is
the maximum (or expected) time between the start and the completion of task i.

Associated with each edge (i,j) of the graph are F’wo real numbers:

Sij and Lij . The state of the program soon after task i is corhpleted and be-
fore task j is started (if task j is processed next) is described by the program
status word, register contents, primary and secondary storage contents and so
forth. The time taken to save (make a copy of) the state of the system at this
stage in the program in secondary storége, is Sij' We shall refer to Sij as
the save time. The time taken to load the state of the system from secondary
storage to primary storage is Lij . '

At each edge (i,j) we may choose to insert, or to not insert a roll-back
point, If a roll-back point is inserted at edge (i, j) then after task i is com-
pleted, andif task j is to be processed next, the state of the system is saved ¢
in secondary storage before task j is started and any prior state which has been
saved earlier is erased. Subsequently, if a transient error occurs, the program
is restarted at the most recently saved state.

We define therecovery time r at any point P in the program to be the

time taken to load the most recently saved state, and to rerun theprogram from
this state to P. If an error is detected at point P, the recovery time r is the
time "lost" due to the error. The question that we wish to answer is: Where
should rollback points be inserted?

- There are several formulations of the problem. Three of the models are
discussed below. In all models we assume that if an error occurs while task i

is being processed then the error is detected before task i is completed.

e e W = e e e 4 e o o <ot ot St 104 A & A an et £ 4 o e s e v ¢ wm = im i e e maiomma it et o ST e

-65-

Worst C‘ase Pesign

Data; With every‘task i we associate a real number ti, where ti is the maxi-
mum processing time that will be required by task 1i. Lij and Sij are the maxi-
mum load and save times if a rollback point is inserted on edge (i,j). We are
also given M, the maximum recovery time. |

Constraints: Insert rollback points so that at every point in the program the
maximum possible recovery time does not exceed M.

Objective Function: Minimize the maximum time (i.e. for the worst case) that

may be spent in saving states of the system in secondary storage.

Minimal Expected Save-Time Design

Data: Associated with task i is a real number ti where ti is the expected

time required to process task i. A real number pij is associated with each

edge (i,j) of the graph, where pij is the probability that task i will be immediate-
ly followed by task j. Lij and Sij are the expected load and save times if a
rollback point is placed on {(i,j). We are also given M, the maximum expected
fecovery time.

Constraints: The expected recovery time at any point in the program is not to
exceed M. |

Objective Function: Minimize the expected time spent in saving states of the

system in secondary storage.

Minimal Expected Run Time Design

Data: pij is a real number associated with each edge (i,j) where pij is the
probability that task i is immediately followed by task j. We associate a probabi-
lity Qi with task i where Qi is the probability that a transient emror will occur
while task i is being processed. Given that a transient error does occur while
task iis being processed, let Yy be the time between the initiation of task i and
the occurrence of the error. yi is a random variable; we assume that the probabi-

lity distribution function for Y is known. Given that a transient error will not

T , N

-66-

occur while task i is beirig probesséd, let ti be the time required to pro'céss
task i. ti is a random variable; we assume that the probability distribution
function for ti is known.- We shall assume that the save and load times, Sij
and Lij are constants.

All events are assumed to be independent.
Constraints: None

Objective Function: Minimize the expected run time of the program.

A Comparison of the Different Formulations

A programmer can generally provide an estimate of the maximum
time that a task will require to get processed; he usually finds it more
difficult to estimate the probability distribution function for the processing
time required by any given task. For this reason, it is not possible to use
the minimal expected run time design unless a substantial amount of measure-
ment can be carried out on the program so as to estimate fhe distribution func-
tions for processing times of all the tasks.

The estimation of the probability that the program will branch in any
barticular direction is also difficult, without substantial measurement. For
these reasons the worst case design is the most pragmatic method of design-
ing rollback points when there are few statistics available.

The best model to use depends on the function of the program as well
as on the information available. |

The worst case design and the constrained expected recovery time
design are discussed in this paper. The minimal expected run time design is
the topic of a subsequent paper. |

We shall first consider worst case design.

Implementation

It is not possible to predict precisely how much processing time a giv-

__en task will require. It therefore seems desirable to make insertion of rollback

-67-

points a dynamic procedure; on some runs of a program it may be preferable'
to have a rollback point on a particular edge while on other runs of the same
program (with different data) it may be preferable not to have a rbllbéck point
on that edge. However, the procedure for making the decision on inserting
rollback points should be siniple so that the decision can be made in real
time with little overhead. The method suggested here fulfills these require-
ments.

We interrogate the recovery time (r) after each task completion
and use it as a basis for making the decision on placing rollback points.
r can be determined readily; Let D be the clocktime at the end of the last
rollback, L the time required to load the system at the last rollback point,

E=D-L, and "clock" the current clock time. Then
r = clock-E.

Suppose that at some point in the program the task just combleted
and the task to be processed next are i and j respectively. Letr be the
recovery time at this point. We show that the optimal decision is to insert
a rollvback point ifr > Bijénd not to insert a rollback point if r sBij, where

Bij is a constant. The set of Bij are compufed before the program is run. When

task i is completed and if task j is to be processed next, r is compared with Bij
and a rollback point is insertéd ifr > Bij . If a rollback point is inserted, then

‘E is updated. Task j is then processed. A block diagram is presented in Figure 4.

Task i is completed and |
—® task j is to be processed _ -
next ‘ r=clock-E
Yes

]

Save state of system

Set E= clock—Lij'
1

Process task j

Figure 4,

-68-

In general r will vary from one run of the program to the next, since the
time required to execute a task will depeﬁd on the input parameters. Hence
“the insertion of rollback points will also vary from run to run of the program,
since the decision to insert rollback points is based on the value of r.
vDefinitions
" If there exists a path from vertex i to vertex j then vertex j is said

to be a successor of vertex i. A vertex with no successors is called an
exit vertex.

For each vertex i in the graph we determine a function fi(r) , for all
possible values of recovery time r, where fi(r) is the minimum time spent in
saving states of the systemafter taski is completed and before the comple-
tion of the program, in the worst case. Since we are using worst case design,
when predicting the amount of time required by a task i wé always assume the
worst, i.e., that task i will require the maximum processing time ti' - Similar-
ly, in predicting the branch that a program will take, we assume the worst, i.e.
that a program will branch such that the largest amount of time will be spent in
saving states of the system.

For each edge (i,j) in the graph we determine functions gij (r) and
Xij (r): gij (r) is the minimum time spent in saving states of the system after
task i is completed and before the completion of the program, in the worst pos-
sible case, if task i is followed by task j. _

xij (r) is the optimal decision variable; xij (r) =1 if a rollback point
is to be inserted on edge (i,j) and xij (r)=0 otherwise.

The Algorithm We assume fi(r) = o foralli, andr >M.

Initialization (0th s‘tep) Define fi(r) =0, r <M, ifi is an exit vertex.
Label all exit vertices. (Vertex i is labelled to show that the function fi(r) has
been determined for it)

kth step, k =1,2,3,....

Determine if there exists any vertex which has all of its successors

labelléd. If no such vertex exists, STOP, the algorithm terminates. If such

-69-

a vertex exists let it be vertex i.
Forall edges (i,j) compute 9 (r) and X, (r) from
gij(r) =Sij + f (L + t) 1fr +tJ>M
= min {fj (r+ tj), i +_fj (Lij + tj) 1 (1)
if r + tj <M
0 if gij (r) = fj (r+tj) (2)

xij (r)
=] otherwise; B is the value of r below which x_(r) =
It follows then that xij (r) = 8] forr < Bij and xij (r) =lforr >1i?>ij .
Then compute fi(r) from
f_(r) = maximum over all edges (i,j) of {g_, (r) } foro =r <M (3)
Label vertex i to show that f (r) has been computed
If f (r) = »forallo <, S’I’OP There does not exist any fea31ble solu-
t10n to the problem. Otherwise, go to the k + l th step.
We shall show that the algorithm terminates wfxen all the nodes in
the graph have been labelled. We may assume without loss of generality
that there is only one entry vertex to the program graph, i.e. there is only.
one vertex wh1ch has no predecessors. Let the entry vertex be vertex num-
ber 1; then task 1 is executed immediately after the program is loaded. Let
the time taken to load the program initially be Lé. Then, the maximum recov-
-ery time immediately after task 1 is completed is LO + tl and hence the worst
case cost (time spent in saving system environments) will be fl (Lo + t1).

If fl (LO + tl) = = then there is no feasible solution to the problem.

We claim that the optimal decision rule for inserting rollback points
on edge (i,j) is given by X, (r) , i.e., if the recovery time immediately after
task i is finished is r, and 1f task j is to be executed next, save the system
environment if and only if xij (r) =1.

Lemma 1: The algorithm terminates when all the vertices in the graph have

been labelled.

-70-

Proof : Every subgraph of a circuitless graph is also circuitless. A cir-
cﬁitless gréph has at least one vertex with no successors; this is true in
particular for every subgraph of unlabelled vertices, i.e., in every sub-

graph of unlabelled vertices, there is at least one vertex which does not

have a successor which is also an unlabelled vertex. All the vertices

without any successors at all are labelled on the 0th step. Hence, if there

| exists one or more unlabelled vertices on the Kth step of the algorithm, K=1,2, ..
then there must be an unlabelled vertex, all of whose successors are labelled,
in which case the algorithm will not terminate. Hence the algorithm terminat-
es only when all the vertices are labelled.

Corollary The algorithm terminates within n steps where n is the number of
vertices in the graph.

Theorem 1. The algorithm determines the optimal decisiop rules Xij(r) er each
edge (i,j).

Proof; We shall show by induction on the kth step that if vertex i is label-
led on the kth step, then xij (r), gij (r) computed by egs. (1), (2), (3) satisfy
fhe definitions given earlier.

Basis: If vertex i is labelled on the first step, then equations (1), (2), and

(3) reduce to

x,.r) =0ifr+t, =M
1} J
1 if r+t:j > M

—

. - . S .
fi(r) gij(r) =0 ifr +tJ, M

S..ifr+t >M
1) }

A rollback point must be inserted on edge (i,j) ifr + tj > M, for otherwise
the recovery time after task j is completed may exceed M. A rollback point
need not be inserted on edge (i,j) if r+ tj < M, and if vertex j is an exit

vertex. Hence, the theorem is trivially true for k=1,

Induction Step Assume the induction hypothesis to be true fork =1, 2, ...,

t-1. We shall prove it to be true fork = t.

-71-

If a rollback point is inserted on .edge (i,j) the maximum recovery
time after task j is Lij + tj. If the recovery time after task j is complet-
ed is Lij + tj . then the minimum time spent in saving states of the system
after task j, in the worst possible case, is fj (Lij + tj) by the induction hypo-
thesis. Si' units of time are spent in saving the state of the system between
tasks i and j. Hence the minimum time spent in saving states of the system,

after task i is completed and it task j is processed next, in the worst case is
S.. + f (L. +t)
i) } 1))
If a rollback point is not inserted on edge (i,j) the maximum recovery
time immediately after task j isr + tj . Hence, in this case the minimum time

spent in saving states of the system after task i, and if task j is processed
next, in the worse case, is
fj (r+ tj)

Ifr + tj > M, a rollback point must be inserted on edge (i,j)
‘if the recovery time after task j is completed is not to exceed M.

JIfr + tj < M, we have the option of not inserting a rollback point
‘ (xij (r) = 0) in which case the minimum time spent in saving states of the system
in the worst case is fj (r+tj) , or of inserting a rollback point (xij (r)=1) in which
case the minimum time spent in saving states of the system in the worse case
is Sij + fj (Lij + tj) . The optimal decision xij (r) and the time spent in saving
states of the system in the worse case after task i and if task j is processed
next are clearly given by equations (1) and (2).

Since fi(r)= max{gij (r)} it follows that fi(r) is the minimum time spent
in saving states of the system after task i in the worst possible case. This
completes the proof of the theorem. Two examples, figures 5 and 6, have been

worked out,

Minimal Expected Save-Time Design

Let pij be.-the probability that task j is followed by task i. Let ti’ Lij

jom - - oo —— - [- - -

-72-
and Sij be expected rather than maximum values. Let us redefine fi (r) as

[0 =)
i Py 95
’ J
The algorithm used in the worst case design will determine the

optimal decision rules for the minimal expected time design with eq. (3)
replaced by (3a). The proof that the algorithm yields the optimal decision

rules is similar to the proof of theorem 1 and is not presented here.

Computation

The amount of computation is proportional to the sum of the number
of vertices and edges in the graph. The computation of fi(r) and gij (r) are

straightforward, since all functions are of the form:
K forq <r <q ,,p=1,2,..T.., where the K _are constants.
p p pt+l P

If all the data, ti' Lij' Sij , M, in the problem are integers, then clearly

qp, p=1,, T are also integers. Hence the maximum number of dis-

continuities T, in the functions fi(r) and gij (r), cannot exceed M.

The computation is most efficiently carried out by means of lists. The

list structures and list processing techniques used are described later.

(3a)

-/3-
EXAMPLE 1

FIGURE 5

-74-

SOLUTION TO EXAMPLE 1

Initialization (0th Sfep)
There is ohly one exit vertex (i.e., a vertex without successors),
viz, vertex 7. . . |
Define f7(r) = { 0 for 0 <r =25
' { o for 25 <r
Label vertex 7 (with a check /) to show that the f function for ver-
tex 7 has been determined. |

lSt Step At this stage we note that only vertex 7 has been labeled. We

note that vertices 5 and 6 have all their successors labelled.

Compute g67(r), % (r) and B67 from equations (1) and (2).

g67(r) = 867 + f7 (L67 + t7) ifr + t7 > M
. i <
min {f7 (r-+,_t7), 867‘+ f7 (L67 + t7) }1f r-v|- t7 M
867 + f7 (L67+ t7) =2+ f7 (2 + 10) = 2+f7 12) = 2
f7 r + t7) = 0 for 0<r < 15
) o for 15<r
Hence -
= <
Ie7 (r) 0 for 0<r<15
2 for 15<r <25

Cqmpute Xey (r) .from

x67(r) = {'O if g67(r) = f7 (r+t7)
.1 otherwise

{o for 0<r <15

{1 for 15<r=25

Hence Xy (r).

and B67= 15

We next compute f6(r) from:

f6(r) = maximum over all edges (6,j) of {ng r))

-75-

Since there is only one edge (6,7)_A1eav1'ng vertex 6, we have

f6(r) = _g67(r) for r<25

Hence f6(r) = 0 for 0<r<l15
T for 15<r<25
{= for 25<r
8

ILabel vertex 6 to showthat f6(r) has been determined.

2nd Step

Now we compute 95_7(r) , x57(r) . 'B57

since vertex 5 has all of its successors labelled.

_ L. + t)).
r) =
95,0 {557 w6, 057 T it e g5 M

from equations (1) and (2),

min {f7(r+§7), 857 + f7 (L57 + t7)} ;f r+ t7 <M

857 + f7 (L

£+t = {0 for 0<r <15

o for:15<r

=7 + t7) = 1+ f7(l+10) =1+ f7(11)=l

= <r <

Hence \g57(r) { 0 for 0<r <15
{ 1 for 15<r <25

%g,00) = { 0 for 0<r <15
{ 1 for 15<r <25

857 = 15

We next compute f5 (r) from

fs(r) = max over all edges (5,j) of {gsj L) 1.
Since there is only one edge (5, 7) out of vertex 5, we have fs(r) = 957(r) .
Hencg fs(r). = {0 for 0<r <15
31 for 15<r< 25
%w for 25 <r

label vertex 5 to show that fs(r) has been computed.

-76-

3rd Step

At. this point, vertices 5, 6, and 7 have been labeled. We note that
vertices 3 and 4 have all their successors labeled.

We compute g (r), x_ _(r) and B
36 36

36

S36+ f6(L36+t6)= 2 + f6 2+ 5)=2+ f6(7) = 2

f6 (r+ t6) = 0 for 0<r<10
2 for 10<r= 20
» for 20 <r
Hence gss(r) = { 0 for 0<r=<10
| { 2 for 10 <r <25
Since g36(r) = f6(r+ t6) forr<20,
we have x, () = { o foro<r=20

{ 1 for 20< r<25

and B36 = 20

We now compu’g@ f3 (r) and since there is only one edge going out of node 3,
namely edge (3,6), we get f3(r) to be the same as g36(r) .
Hence f3 (r) =4 0 for 0<r <10
2 for 10<r=<25
o for25<r
LabelAvertex 3 to show that _f3 (r) has been determined.

_ 4th Step.

We note that vertex 4 has all of its successors labelled. Hence we

similarly compute 946 4), x46(r) , B46 and f4(r)

g46.(r) = {O for 0 <r <10

, {l for 10 <r=<25
x46(r) =4 0 for O<r=<l10

1 for 10 <r<25

-77-

B =10
0 for 0<r <10
1 for 10<r=<25

o for 25<r

f;(r)

th

B23.
Sy3 + I3 (L3
£+ t) ={0 for 0<r <5

2 for 5<r=<20
® for 20 <r
Hence 923(r) = 0 for 0<r<5
2 for 5<r=< 20
3 for 20 <r=<25

x23(r) = {o for 0< 0<r=20
{l for 20<r=< 25
323 = 20

Similarly, we get.
(4) = {1 for 0<r <15

924
{3 for 15<r< 25
xz4(r) =" {Ofor 0<r<l5
{1 for 15<r=<25
.

Bog = 15

S Step
At this stage vertices 3,4,5, 6. and 7 have been labeled. We note

that vertex 2 has all of its successors labelled. We now compute g23(r) , X

+t3)=3+f3(3+5)=3+f3(8)=.3

(r),

-78-

Hence f2 (r) = max {923(1’), 924(1') }
= {l for 0<r<S5S
%2 for 5<r=<15

3 for 15 <r<25

We label vertex 2 to show that f2 (r) has been computed.

Bth Step

At this stage vertices 2,3,4,5,6,7 have been labelled. We note
that vertex 1 has all of its successors labeled.

Hence we compute 915 (r), xlz(r) . B12 and gls(r), xls(r), BlS'

glz(r) ={ 3 for0<r=<10
{5 for 10 <r<25

xlz(r) = {0 for 0<r=<10
{ 1 for 10 <r <25

B, = {10

. gls(r)"= 1 for 0 <r<5
3 for 5 <r=<25

xls(r) =<0 for 0<r=<5
1 for 5<r=<25

Bjg= ® L y

Henoe £(r) =max {g (), g, ()}

3 for 0<r=I10

: 5 for 10<r<25

label vertex 1,

. e : et e - e

ety e L el e e e - T - s e
B T e e e e e et s e n C e _

— JE— — o e e —

{

. - [— —

RO -

: e - —

' e e e

-79-

: 7th Step

Since all the vertices have been labelled the algorithm terminates.
To summarize the solution to the problem:

=5, B,,=20, B, =15, B, =10

The breakpoints are: B12 =10, B 23 24 46

15

B36=20' B67=15, B57=15

Letthe time LO taken to load the program initially be 1 unit. Then
the time spent in saving system environments in the worst case is
fi (LO + ti) = fi (11) = 5 units. However, the insertion of rollback points will
be dynamic as shown below. _

Suppose that in a given run of the above program tasks 1,2,4,6 and 7
are executed in sequence, and suppose all tasks take 3 units of time. Then
no rollback points will be inserted. If on another run of the same program,
the Samé tasks, l',2, 4,6 and 7 are executed in sequence, -and all tasks that
take 5 units of time, a single rollback point will be inserted on edge (4,6);
i.e. the system environment will be saved after task 4 is complete and before
task 6 is initiated. If on yet another run of the same program, the same tasks
afe executed,- and each task takes its maximuin time, i.e. task 1 takes 10 units
of time, task 2 takes 15 units of time etc., rollback points will be inserted
between tasks 1 and 2, 2 and 4, 4 and 6, but not between 6 and 7. Hence, we
see, that real-time decisions are made as to which edges are to contain roll-
back points; these decisions are clearly a function of input data. However,
even though the insertion of rollback points is dynamic, the implementation of
the algorithm is very simple, and requires negligible overhead, once the break-
points Bij are determined . Note that the breakpoints Bij themselves are not a

function of input data.

Example 2

-80-

12

Figure 6

-81-

Solution to Example 2, Figure 6

th _
0 ~Step Vertex 2 is an exit vertex.

Put fz(r) = {O for 0<r=<10
{oo for 10 <r
st
1l Step Since vertex 1 has all of its successors labelled, we find
g,,(r) and £,@).

f2 (r+ tz) = {0 for 0<r=<l

{oo for 1< r
S12 + fz (L12+ tz) = 2+f2(2+ 9)=2+f2(11)‘=oo
: 3 r ’
Hence glz(r) = 10 for 0 <r=<1l
{eo for l<r

Clearly fl(r) =9, (r), since there is only one edge out of vertex l.

Letthe time L0 taken to load the program initially be 1 unit., Then,
since'fl (LO + tl) = fl 1+ 2) =«,there exists no feasible solution to

the problem.

The Code for the Algorithm.

A graphical example for computing g_ij (r) is shown in Figure 7, and
of fi(r) is shown in Figure 8. '

Consider the problem shown in Figure 9. The input data is of the
form shown in table 1. The first row, for instance, of table 1 states that

task 1 may be succeeded by task 2, and Ll =1, S

2 2= 1

Three linked lists are used for storing information. They are called
the NODE, EDGE and FUNCTION lists. Each cell in the NODE list has five
" fields (table 2). Cell (row) 3 of table 2 states that vertex 3 has 1 (cqntent
of COUNT field) successor; the list of predecessors of vertex 3 starts in
cell number 2 (content of TOP field) of the EDGE list; the list of succes~-

sors starts at cell number 4 (content of BOTTOM field) of the EDGE list; &

-82-

the estimated maximum time of task 3 is 10 units; FLINK points to the cell
.in the FUNCTION list where the first element of the f3 (r) function is stored.
Each cell in the EDGE list has seven fields (table 3). PREDECESSOR
NODE and PREDECESSOR LINK fields are used to keep a linked list of the
predecessors of a node. SUCCESSOR NODE and SUCCESSOR LINK fields are
used to keep a linked list of the successors of a node. Forinstance the
first cell in the list of predecessors of vertex 3 is cell number 2 of the EDGE
list. The PREDECESSOR NODE field of cell num.ber 2 of the EDGE list is 2,
since vertex 2 is a predecessor of vertex 3. The PREDECESSOR LINK
field links the list of predecessors. The LOAD and SAVE TIME fields are self
explanatory, the load time of 3 and the save time of 3 in the second cell of
the EDGE list refer to edge (2,3). GLINK points to a cell in the FUNCTION
list where the first element of the g23(r) function is stored
The £ () and g () functions are step functions. They are stored
by storing the breakpoints. For instance, a step function and the method of
storing it as a linked list are shown in Figure 10. The f and g functions are
stored as linked lists; each cell in the FUNCTION list has three fields: X, Y,
and XYLINK.

Note that a task graph with M nodes and N edges needs only N+M
cells for the NODE and EDGE list (A graph with 1000 nodes and 3000 edges
needs only 4000 cells). The size of the FUNCTION LIST varies; the f and g
functions are computed when required and the storage occupied by the f and
g funcﬂons are returned to free storage when they are no longer required.
This method of storing the f and g functions is economical and allows
for easy computation. For instance, evaluating fi(r) from fi(r) =
max {g) , ...,g, () } can be done readily by merely inspecting the —

points of <]'hscont1nu1ty F()l e. the contents of the X and Y fields of the cells) of

g,),qg. ().
i]l ljp

-83-

Experimental Results

The algorithm has been coded in FORTRAN and run on a CDC 6600.

Thirty problefns were generated‘ using the random number generator on the
. CDC 6600. Each problem had roughly 200 nodes and 400 edges. All prob-
lems were solved in less than 0.1l seconds. The computational results are

shown intable 4.

Conclusions

The rollback problem has been described. Differentmodels for the
rollback problem have been compared and an optimal algorithm for one of
the models has been presented. The list structures used in coding the al-
gorithm have been discussed. Some experimental results obtained by run-
ning the code on a CDC 6600 have been presented.

The model has two possible drawbacks. Firstly, it is hard to accurate-
ly estimate the maximum execution times of tasks. Secondly, an accurate.des—
cription of a prdgram may require that the program graph have a very large numb-
er of nodes. The second drawback is vitiated since the algorithm is efficient
and does not require much storage or processing time to analyze large graphs.

As in many modeling problems these days, the major "cost" of using
the model is the time required {o obtain data and estimates rather than the
time required to run the algorithm on a computer. Improvements should pri-

marily be concerned with models using less data and fewer estimates.

-84 -

Figure 7

Example I
' onah L I : .S.. + f. L.. + T-
)] =" " @y + Ty
- 3 |
oo ? ! -y —— fj (I'+Tj)
" | _l
M-T, ot
BREAKPOINT
The gij (r) function is marked by
diagonally hatched lines.
Example I1 - £
j j (r+TJ.)
5., + £ (L., +
gl flctine l L ' SiJ' j (LU TJ')
+
:/ 7 //, raa '
¥ !
V.
i i
? {
yaw) ," ! . i
\' M—‘I;, _ r
BREAKPOINT

Store the system environment immediately after

task i is complete and if taék_j_ is called next

if and only if r >BREAKPOINT, where r is the

reéovery time when task i is complete.

-85-

Figure 8
Computing fl(r) Given glz(r) and gl3(r)

’! ’I ’.a ,a I: ,/ ,/7/ ’,'/[' f/// ’j ,:7/_
A
d’ I_ e
{f ——
A r
1 FJ 93,(r)
Y
4/ fppd it i ek
2 I
| 9,5 @)
R

f1 (r) is shown in hatched lines.

-86-

L =
24
Successor Predecessor

Task Task Load
Number Number Time

2 1 1

3 2 3

4 2 2

4 3 1

5 4 2

Table 1

The number of rows
in the table.

Save
Time

NN W W

{= The number of edges
in the graph.

-87-

NODE LIST
Count Top Bottom Time Flink
Cell No., 1 —===————u 1 0 1 10 0
Cell No., 2 ===---- -2 1 3 5 0
Cell No, 3-----=—-- 1 2 4 10 0
Cell No. 4 =====——=~ 1 4 S 5 0
Cell No., 5 ==-=—====- 0 5 0 10 0
i Table 2 - N
EDGE LIST
Predecessor Predecessor Successor Successor Load Save::Glink
Node Link Node Link Ijimé“‘Tﬁﬁe -
Cell No. 1l --=--- 1 0 2 0 1 1 0
Cell No, 2 —---=-2 0 3 0 3 3 0
Cell No. 3---—-—- 2 0 4) 2 3 0]
Cell No., 4~==—-- 3 3 4 0 1 2 0
Cell No, 5-———=-- 4 0 5 0 2 2 0

Table 3

Cost

-88-

Figure 10

Discontinuities

0 2 6 10 r
X (abcissa) of ~
, . 2 10
discontinuity
Y (ordinate) of !
discontinuity 4
X Y XYLINK X Y XYLINK X Y XYLINK
(211 o 62 o——t—>10 | 4
d
POINTER to
start of
LIST .
FUNCTION LIST
. XY XYLINK
Cell Number 1 2 1 3
Cell Number 2 1] 0
Cell Number 3 - 6 2 4
Cell Number 4 10 g4 0

PROBLEM NUMBER -
NUMBER OF NODES:
NUMBER OF EDGES:

EXECUTION TIME
IN SECONDS

PROBLEM NUMBER:
NUMBER OF NODES - :

NUMBER OF EDGES :

EXECUTION TIME
IN SECONDS

PROBLEM NUMBER:
NUMBER OF NODES :
NUMBER OF EDGES:

EXECUTION TIME IN:
SECONDS

-89-

 TABLE 4

| Z S 4 Q- [$) 7/ o Y 10

220 | 225| 176 | 200| 230| 233182 | 188 222 | 244

429 | at9| 318 | 397| 469 446 361 | 374 434 447
.099 | .087| .068| .093| .104| .095/.076.089.095].098
1 12| 13 Bl el | 6 s | 20|
223 | 201| 192 226 212 | 217 200] 216/192 | 230
429 | 388| 382 | 4s8| 410 | 424| 380| 417|377 | 434
.098| .087| .086 | .096|.093| .096/.077| .091.086 | .098

21 22| 23 24| 25| 26| 27| 28] 29| 30
220 | 206| 16l 225 | 217 | 215| 192| 254 175| 179
456 400| 302 | 449 | 431 | a21f 361 480| 350] 325
.102 07¢ 067 |.105 |.103| .084 .084 .110{.083| .073

1.

10.

11.

12,

13,

14.

-90-

REFERENCES

G. Oppenheimer, K. P, Clancy. Considérations of software protection
and recovery from hardware failures. Proc. FJCC 1968.

A. N. Higgins. Error recovery through programming. Proc. FJCC 1968.

R. E. Bellman, S. E. Dreyfus. Applied dynamic programming.
Princeton University Press 1962,

J. Von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable compcnents. -

Automata Studies, Annals of math. studies no. 34. (C. E. Shannon and
J. McCarthy eds.)
Princeton University Press 1956,

J. Martin. Design of real-time computer systems. Prentice-Hall
Englewood Cliffs N, J. 1967.

" A. Cowan. Software and hardware reliability. Forthcoming M. S. thesis

in computer sciences at the University of Texas at Austin.

W. H. Pierce. Failure tolerant computer design. Academic Press, New York
1965. '

F. P. Matur, A. Avizienis. Reliability analysis of a hybrid-redundant digital
system: Generalized triple modular redundancy with self-repair.
Proc. SJCC 1970,

D. N. Freeman. A storage-hierarchy system for batch-processing.
Proc., SJCC 1968.

C. V. Ramamoorthy. A structural theory of machine diagnosis.
Proc. SJCC 1967, _

C. V. Ramamoorthy, K. M. Chandy, M. J. Gonzalez. Optimal Scheduling Strate-

gies in a Multiprocessor System. To appear in IEEE Trans. on EC.

E. C. Russell, G. Estrin. Measurement based automatic analysis of FORTRAN
programs. Proc. SJCC 1969,

B. Beizer. Analytical techniques for the statistical evaluation of program
running time. Proc. FJCC 1970.

R. C. Daley, P. G. Neumann. A general purpose file system for secondary
storage. Proc. FJCC - 1965.

